One of the primary efforts in influenza vaccine strain recommendation is to monitor through gene sequencing the viral surface protein haemagglutinin (HA) variants that lead to viral antigenic changes. Here we have developed a computational method, denoted as PREDAC, to predict antigenic clusters of influenza A (H3N2) viruses with high accuracy from viral HA sequences. Application of PREDAC to large-scale HA sequence data of H3N2 viruses isolated from diverse regions of Mainland China identified 17 antigenic clusters that have dominated for at least one season between 1968 and 2010. By tracking the dynamics of the dominant antigenic clusters, we not only find that dominant antigenic clusters change more frequently in China than in the United States/Europe, but also characterize the antigenic patterns of seasonal H3N2 viruses within China. Furthermore, we demonstrate that the coupling of large-scale HA sequencing with PREDAC can significantly improve vaccine strain recommendation for China.