pubmed-article:9463866 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:9463866 | lifeskim:mentions | umls-concept:C0262950 | lld:lifeskim |
pubmed-article:9463866 | lifeskim:mentions | umls-concept:C0023175 | lld:lifeskim |
pubmed-article:9463866 | lifeskim:mentions | umls-concept:C1527148 | lld:lifeskim |
pubmed-article:9463866 | lifeskim:mentions | umls-concept:C0205369 | lld:lifeskim |
pubmed-article:9463866 | lifeskim:mentions | umls-concept:C0805701 | lld:lifeskim |
pubmed-article:9463866 | lifeskim:mentions | umls-concept:C0043309 | lld:lifeskim |
pubmed-article:9463866 | lifeskim:mentions | umls-concept:C0016315 | lld:lifeskim |
pubmed-article:9463866 | lifeskim:mentions | umls-concept:C0936012 | lld:lifeskim |
pubmed-article:9463866 | lifeskim:mentions | umls-concept:C1524063 | lld:lifeskim |
pubmed-article:9463866 | lifeskim:mentions | umls-concept:C1707689 | lld:lifeskim |
pubmed-article:9463866 | lifeskim:mentions | umls-concept:C1285529 | lld:lifeskim |
pubmed-article:9463866 | lifeskim:mentions | umls-concept:C1515655 | lld:lifeskim |
pubmed-article:9463866 | pubmed:issue | 10-12 | lld:pubmed |
pubmed-article:9463866 | pubmed:dateCreated | 1998-3-5 | lld:pubmed |
pubmed-article:9463866 | pubmed:abstractText | X-ray fluorescence (XRF) systems have been increasingly used for in vivo toxic trace-element analysis in the human body, such as lead in the tibia. Monte Carlo simulation can provide an efficient and flexible method for designing and using in vivo XRF systems. The Monte Carlo code CEARXRF has been developed specifically to simulate the complete pulse height spectrum of energy-dispersive XRF systems. This code is capable of tracking photons in a general geometry and modelling all of the physics of photon interactions in the energy range 1-150 keV for elements Z = 1-94, including primary and higher degree excitations of K and L XRF, the Doppler broadening of Compton-scattered photon energies, and the polarization effects in low-energy photon scatterings. The scattering background for minimum detectable concentration (MDC) analysis may be simulated more accurately by taking into account Doppler broadening in the distribution of the Compton-scattered photon energy due to electron-binding effects. The use of polarized excitation photons has been shown to be important in producing a low scattering background and good measurement sensitivity. The code has two very unique and important features: (1) complete composition and density correlated sampling that is extremely useful for studying measurement sensitivity to small changes in sample composition and density; and (2) Monte Carlo library spectra calculation for the determination of elemental amounts by the Monte Carlo-Library Least-Squares (MCLLS) method. The capability of CEARXRF to aid the design and optimization of in vivo XRF analysis has been verified by modelling hypothesized lead K and L XRF measurement systems. | lld:pubmed |
pubmed-article:9463866 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:9463866 | pubmed:language | eng | lld:pubmed |
pubmed-article:9463866 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:9463866 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:9463866 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:9463866 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:9463866 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:9463866 | pubmed:issn | 0969-8043 | lld:pubmed |
pubmed-article:9463866 | pubmed:author | pubmed-author:LeeS HSH | lld:pubmed |
pubmed-article:9463866 | pubmed:author | pubmed-author:AnRR | lld:pubmed |
pubmed-article:9463866 | pubmed:author | pubmed-author:GardnerR PRP | lld:pubmed |
pubmed-article:9463866 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:9463866 | pubmed:volume | 48 | lld:pubmed |
pubmed-article:9463866 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:9463866 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:9463866 | pubmed:pagination | 1403-12 | lld:pubmed |
pubmed-article:9463866 | pubmed:dateRevised | 2007-11-14 | lld:pubmed |
pubmed-article:9463866 | pubmed:meshHeading | pubmed-meshheading:9463866-... | lld:pubmed |
pubmed-article:9463866 | pubmed:meshHeading | pubmed-meshheading:9463866-... | lld:pubmed |
pubmed-article:9463866 | pubmed:meshHeading | pubmed-meshheading:9463866-... | lld:pubmed |
pubmed-article:9463866 | pubmed:meshHeading | pubmed-meshheading:9463866-... | lld:pubmed |
pubmed-article:9463866 | pubmed:meshHeading | pubmed-meshheading:9463866-... | lld:pubmed |
pubmed-article:9463866 | pubmed:meshHeading | pubmed-meshheading:9463866-... | lld:pubmed |
pubmed-article:9463866 | pubmed:meshHeading | pubmed-meshheading:9463866-... | lld:pubmed |
pubmed-article:9463866 | pubmed:articleTitle | Development of the specific purpose Monte Carlo code CEARXRF for the design and use of in vivo X-ray fluorescence analysis systems for lead in bone. | lld:pubmed |
pubmed-article:9463866 | pubmed:affiliation | Department of Nuclear Engineering, North Carolina State University, Raleigh 27695-7909, USA. | lld:pubmed |
pubmed-article:9463866 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:9463866 | pubmed:publicationType | Research Support, U.S. Gov't, P.H.S. | lld:pubmed |