pubmed-article:9004377 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:9004377 | lifeskim:mentions | umls-concept:C0026507 | lld:lifeskim |
pubmed-article:9004377 | lifeskim:mentions | umls-concept:C2717898 | lld:lifeskim |
pubmed-article:9004377 | lifeskim:mentions | umls-concept:C0024828 | lld:lifeskim |
pubmed-article:9004377 | pubmed:issue | 4 | lld:pubmed |
pubmed-article:9004377 | pubmed:dateCreated | 1997-3-20 | lld:pubmed |
pubmed-article:9004377 | pubmed:abstractText | Appropriate models in biostatistics are often quite complicated. Such models are typically most easily fit using Bayesian methods, which can often be implemented using simulation techniques. Markov chain Monte Carlo (MCMC) methods are an important set of tools for such simulations. We give an overview and references of this rapidly emerging technology along with a relatively simple example. MCMC techniques can be viewed as extensions of iterative maximization techniques, but with random jumps rather than maximizations at each step. Special care is needed when implementing iterative maximization procedures rather than closed-form methods, and even more care is needed with iterative simulation procedures: it is substantially more difficult to monitor convergence to a distribution than to a point. The most reliable implementations of MCMC build upon results from simpler models fit using combinations of maximization algorithms and noniterative simulations, so that the user has a rough idea of the location and scale of the posterior distribution of the quantities of interest under the more complicated model. These concerns with implementation, however, should not deter the biostatistician from using MCMC methods, but rather help to ensure wise use of these powerful techniques. | lld:pubmed |
pubmed-article:9004377 | pubmed:language | eng | lld:pubmed |
pubmed-article:9004377 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:9004377 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:9004377 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:9004377 | pubmed:month | Dec | lld:pubmed |
pubmed-article:9004377 | pubmed:issn | 0962-2802 | lld:pubmed |
pubmed-article:9004377 | pubmed:author | pubmed-author:GelmanAA | lld:pubmed |
pubmed-article:9004377 | pubmed:author | pubmed-author:RubinD BDB | lld:pubmed |
pubmed-article:9004377 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:9004377 | pubmed:volume | 5 | lld:pubmed |
pubmed-article:9004377 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:9004377 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:9004377 | pubmed:pagination | 339-55 | lld:pubmed |
pubmed-article:9004377 | pubmed:dateRevised | 2006-11-15 | lld:pubmed |
pubmed-article:9004377 | pubmed:meshHeading | pubmed-meshheading:9004377-... | lld:pubmed |
pubmed-article:9004377 | pubmed:meshHeading | pubmed-meshheading:9004377-... | lld:pubmed |
pubmed-article:9004377 | pubmed:meshHeading | pubmed-meshheading:9004377-... | lld:pubmed |
pubmed-article:9004377 | pubmed:meshHeading | pubmed-meshheading:9004377-... | lld:pubmed |
pubmed-article:9004377 | pubmed:meshHeading | pubmed-meshheading:9004377-... | lld:pubmed |
pubmed-article:9004377 | pubmed:meshHeading | pubmed-meshheading:9004377-... | lld:pubmed |
pubmed-article:9004377 | pubmed:meshHeading | pubmed-meshheading:9004377-... | lld:pubmed |
pubmed-article:9004377 | pubmed:meshHeading | pubmed-meshheading:9004377-... | lld:pubmed |
pubmed-article:9004377 | pubmed:meshHeading | pubmed-meshheading:9004377-... | lld:pubmed |
pubmed-article:9004377 | pubmed:meshHeading | pubmed-meshheading:9004377-... | lld:pubmed |
pubmed-article:9004377 | pubmed:meshHeading | pubmed-meshheading:9004377-... | lld:pubmed |
pubmed-article:9004377 | pubmed:meshHeading | pubmed-meshheading:9004377-... | lld:pubmed |
pubmed-article:9004377 | pubmed:meshHeading | pubmed-meshheading:9004377-... | lld:pubmed |
pubmed-article:9004377 | pubmed:year | 1996 | lld:pubmed |
pubmed-article:9004377 | pubmed:articleTitle | Markov chain Monte Carlo methods in biostatistics. | lld:pubmed |
pubmed-article:9004377 | pubmed:affiliation | Department of Statistics, Columbia University, New York, NY 10027, USA. | lld:pubmed |
pubmed-article:9004377 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:9004377 | pubmed:publicationType | Research Support, U.S. Gov't, Non-P.H.S. | lld:pubmed |
pubmed-article:9004377 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:9004377 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:9004377 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:9004377 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:9004377 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:9004377 | lld:pubmed |