Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:8184945rdf:typepubmed:Citationlld:pubmed
pubmed-article:8184945lifeskim:mentionsumls-concept:C0025663lld:lifeskim
pubmed-article:8184945lifeskim:mentionsumls-concept:C0018787lld:lifeskim
pubmed-article:8184945lifeskim:mentionsumls-concept:C1704632lld:lifeskim
pubmed-article:8184945lifeskim:mentionsumls-concept:C0449468lld:lifeskim
pubmed-article:8184945lifeskim:mentionsumls-concept:C0871261lld:lifeskim
pubmed-article:8184945lifeskim:mentionsumls-concept:C2911692lld:lifeskim
pubmed-article:8184945lifeskim:mentionsumls-concept:C1706817lld:lifeskim
pubmed-article:8184945lifeskim:mentionsumls-concept:C0552449lld:lifeskim
pubmed-article:8184945lifeskim:mentionsumls-concept:C0870071lld:lifeskim
pubmed-article:8184945lifeskim:mentionsumls-concept:C1705241lld:lifeskim
pubmed-article:8184945lifeskim:mentionsumls-concept:C0205374lld:lifeskim
pubmed-article:8184945lifeskim:mentionsumls-concept:C1705242lld:lifeskim
pubmed-article:8184945pubmed:issue4 Pt 2lld:pubmed
pubmed-article:8184945pubmed:dateCreated1994-6-10lld:pubmed
pubmed-article:8184945pubmed:abstractTextDiscrete theoretical methods, compatible with the discrete features of the beating heart, are used together with experimental study to attain a quantitative understanding of the transient response to a volume perturbation and of sustained mechanical alternans (SMA) in the beating heart. This is done in three stages. In stage A, a first-order difference equation describes the stroke volume (SV) response due to the Frank-Starling mechanism. It is shown that the value of gamma, the slope of the SV-end-diastolic volume curve, determines the type of response obtained because of a perturbation: 1) nonoscillatory decay for gamma < 1,2) oscillatory decay for 1 < gamma < 2, 3) SMA for gamma = 2, and 4) chaotic response for gamma > 2. In stage B, when the effect of each SV change on the successive end-diastolic aortic pressure (P) is considered, SV response to a perturbation is determined by a second-order difference equation. The solution of this equation shows that the response is determined by gamma and by the afterload factor lambda 1 = alpha 1.delta, where alpha 1 = delta Pj + 1/delta SVj and delta = delta SVj + 1/delta Pj + 1. The responses are a nonoscillatory decay for lambda 1 < 1 - gamma (type 1), oscillatory decay for 1 - (gamma/2) > lambda 1 > 1 - gamma (type 2), SMA for lambda 1 = 1 - gamma/2 (type 3), and 2:1 electrical-mechanical response for lambda 1 > 1 - gamma/2 (type 4). In stage C, a single volume perturbation, delta SVj, will directly affect not only Pj + 1 but also the subsequent values of P. Filling volume perturbations performed with a mitral valve occluder in eight anesthetized dogs led only to type 1 and 2 responses. The responses predicted by the model (using the experimental values of gamma and lambda 1) in each of the eight open-chest dogs are compatible with the experimental responses, suggesting that it is unlikely that SMA is initiated and maintained by variations in preload and afterload.lld:pubmed
pubmed-article:8184945pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:8184945pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:8184945pubmed:languageenglld:pubmed
pubmed-article:8184945pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:8184945pubmed:citationSubsetIMlld:pubmed
pubmed-article:8184945pubmed:statusMEDLINElld:pubmed
pubmed-article:8184945pubmed:monthAprlld:pubmed
pubmed-article:8184945pubmed:issn0002-9513lld:pubmed
pubmed-article:8184945pubmed:authorpubmed-author:SonnenblickE...lld:pubmed
pubmed-article:8184945pubmed:authorpubmed-author:AdlerDDlld:pubmed
pubmed-article:8184945pubmed:authorpubmed-author:YellinE LELlld:pubmed
pubmed-article:8184945pubmed:authorpubmed-author:NikolicS DSDlld:pubmed
pubmed-article:8184945pubmed:issnTypePrintlld:pubmed
pubmed-article:8184945pubmed:volume266lld:pubmed
pubmed-article:8184945pubmed:ownerNLMlld:pubmed
pubmed-article:8184945pubmed:authorsCompleteYlld:pubmed
pubmed-article:8184945pubmed:paginationH1657-71lld:pubmed
pubmed-article:8184945pubmed:dateRevised2007-11-15lld:pubmed
pubmed-article:8184945pubmed:meshHeadingpubmed-meshheading:8184945-...lld:pubmed
pubmed-article:8184945pubmed:meshHeadingpubmed-meshheading:8184945-...lld:pubmed
pubmed-article:8184945pubmed:meshHeadingpubmed-meshheading:8184945-...lld:pubmed
pubmed-article:8184945pubmed:meshHeadingpubmed-meshheading:8184945-...lld:pubmed
pubmed-article:8184945pubmed:meshHeadingpubmed-meshheading:8184945-...lld:pubmed
pubmed-article:8184945pubmed:meshHeadingpubmed-meshheading:8184945-...lld:pubmed
pubmed-article:8184945pubmed:meshHeadingpubmed-meshheading:8184945-...lld:pubmed
pubmed-article:8184945pubmed:meshHeadingpubmed-meshheading:8184945-...lld:pubmed
pubmed-article:8184945pubmed:year1994lld:pubmed
pubmed-article:8184945pubmed:articleTitleModeling the transient response to volume perturbations in the beating heart by the difference equation method.lld:pubmed
pubmed-article:8184945pubmed:affiliationDepartment of Biomedical Engineering, Hadassah University Hospital, Ein Kerem, Jerusalem, Israel.lld:pubmed
pubmed-article:8184945pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:8184945pubmed:publicationTypeComparative Studylld:pubmed
pubmed-article:8184945pubmed:publicationTypeResearch Support, U.S. Gov't, P.H.S.lld:pubmed