Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:8023037rdf:typepubmed:Citationlld:pubmed
pubmed-article:8023037lifeskim:mentionsumls-concept:C1511726lld:lifeskim
pubmed-article:8023037lifeskim:mentionsumls-concept:C0205199lld:lifeskim
pubmed-article:8023037lifeskim:mentionsumls-concept:C0023732lld:lifeskim
pubmed-article:8023037lifeskim:mentionsumls-concept:C0205257lld:lifeskim
pubmed-article:8023037pubmed:issue5-7lld:pubmed
pubmed-article:8023037pubmed:dateCreated1994-8-4lld:pubmed
pubmed-article:8023037pubmed:abstractTextA composite linear model (CLM) is a matrix model for incomplete multinomial data. A CLM provides a unified approach for maximum likelihood inference which is applicable to a wide variety of problems involving incomplete multinomial data. By formulating a model as a CLM, one can simplify computation of maximum likelihood estimates and asymptotic standard errors. As an example, we use CLM to test marginal homogeneity for ordered categories, subject to both ignorable and non-ignorable missing-data mechanisms.lld:pubmed
pubmed-article:8023037pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:8023037pubmed:languageenglld:pubmed
pubmed-article:8023037pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:8023037pubmed:citationSubsetIMlld:pubmed
pubmed-article:8023037pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:8023037pubmed:statusMEDLINElld:pubmed
pubmed-article:8023037pubmed:issn0277-6715lld:pubmed
pubmed-article:8023037pubmed:authorpubmed-author:BakerS GSGlld:pubmed
pubmed-article:8023037pubmed:issnTypePrintlld:pubmed
pubmed-article:8023037pubmed:volume13lld:pubmed
pubmed-article:8023037pubmed:ownerNLMlld:pubmed
pubmed-article:8023037pubmed:authorsCompleteYlld:pubmed
pubmed-article:8023037pubmed:pagination609-22lld:pubmed
pubmed-article:8023037pubmed:dateRevised2006-11-15lld:pubmed
pubmed-article:8023037pubmed:meshHeadingpubmed-meshheading:8023037-...lld:pubmed
pubmed-article:8023037pubmed:meshHeadingpubmed-meshheading:8023037-...lld:pubmed
pubmed-article:8023037pubmed:meshHeadingpubmed-meshheading:8023037-...lld:pubmed
pubmed-article:8023037pubmed:meshHeadingpubmed-meshheading:8023037-...lld:pubmed
pubmed-article:8023037pubmed:meshHeadingpubmed-meshheading:8023037-...lld:pubmed
pubmed-article:8023037pubmed:meshHeadingpubmed-meshheading:8023037-...lld:pubmed
pubmed-article:8023037pubmed:meshHeadingpubmed-meshheading:8023037-...lld:pubmed
pubmed-article:8023037pubmed:meshHeadingpubmed-meshheading:8023037-...lld:pubmed
pubmed-article:8023037pubmed:meshHeadingpubmed-meshheading:8023037-...lld:pubmed
pubmed-article:8023037pubmed:articleTitleComposite linear models for incomplete multinomial data.lld:pubmed
pubmed-article:8023037pubmed:affiliationBiometry Branch, National Cancer Institute, Bethesda, MD 20892.lld:pubmed
pubmed-article:8023037pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:8023037pubmed:publicationTypeComparative Studylld:pubmed