Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:7619802rdf:typepubmed:Citationlld:pubmed
pubmed-article:7619802lifeskim:mentionsumls-concept:C0995425lld:lifeskim
pubmed-article:7619802lifeskim:mentionsumls-concept:C0010505lld:lifeskim
pubmed-article:7619802lifeskim:mentionsumls-concept:C0443286lld:lifeskim
pubmed-article:7619802lifeskim:mentionsumls-concept:C1324275lld:lifeskim
pubmed-article:7619802lifeskim:mentionsumls-concept:C0063148lld:lifeskim
pubmed-article:7619802pubmed:issue28lld:pubmed
pubmed-article:7619802pubmed:dateCreated1995-8-30lld:pubmed
pubmed-article:7619802pubmed:abstractTextHydroxylamine oxidoreductase (HAO) catalyzes the reaction NH2OH+H2O-->HNO2+4e- + 4H+, a step in the energy-generating oxidation of ammonia to nitrite by the bacterium Nitrosomonas europaea. Each subunit of HAO contains 7 c-hemes and 1 heme P460. The latter, c-heme cross-linked from a methylene carbon to the ring of a protein tyrosine, forms part of the active site. The iron of heme P460 is probably linked by a bridging ligand to the iron of a c-heme. Here, the reaction of cyanide with ferric HAO was studied by optical, transient, and steady state kinetic techniques. The molecules, F-, Cl-, Br-, N3-, SCN-, and OCN- did not react with HAO. A single molecule of cyanide bound with high affinity to heme P460 of HAO. The optical and kinetic characteristics of formation of the monocyano complex of HAO resembled those of cyanide derivatives of other heme proteins. Cyanide, in the monocyano complex, was a noncompetitive inhibitor and remained bound during turnover. HAO was found in two forms. The most common form, HAO-A, formed only the monocyano derivative of heme P460, whereas the other, HAO-B, formed a mono- and dicyano complex. The optical properties and kinetics of formation of the mono- and dicyano complexes were different enough to easily allow independent analysis. The optical and kinetic characteristics of formation of the monocyano complex of heme P460 of HAO A and B were very similar. The dicyano complex of HAO-B appeared to result from the addition of a second molecule of cyanide to heme P460. The rate of conversion of the monocyano to the dicyano complex was stimulated 100-fold by the binding of substrate. Formation of the monoheme complex inhibited enzyme activity. The kinetic constants for the first-order formation of the monocyano derivative and the inhibition of substrate oxidation (under either transient or steady-state conditions) were different. The apparent discrepancy could be resolved by the hypothesis that HAO is functionally a dimer in which electrons rapidly equilibrate between the c-hemes of each subunit but not between oligomers. The results form the basis for the use of cyanide as a probe of the active site of HAO.lld:pubmed
pubmed-article:7619802pubmed:languageenglld:pubmed
pubmed-article:7619802pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:7619802pubmed:citationSubsetIMlld:pubmed
pubmed-article:7619802pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:7619802pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:7619802pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:7619802pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:7619802pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:7619802pubmed:statusMEDLINElld:pubmed
pubmed-article:7619802pubmed:monthJullld:pubmed
pubmed-article:7619802pubmed:issn0006-2960lld:pubmed
pubmed-article:7619802pubmed:authorpubmed-author:BalnyCClld:pubmed
pubmed-article:7619802pubmed:authorpubmed-author:HooperA BABlld:pubmed
pubmed-article:7619802pubmed:authorpubmed-author:LoganM SMSlld:pubmed
pubmed-article:7619802pubmed:issnTypePrintlld:pubmed
pubmed-article:7619802pubmed:day18lld:pubmed
pubmed-article:7619802pubmed:volume34lld:pubmed
pubmed-article:7619802pubmed:ownerNLMlld:pubmed
pubmed-article:7619802pubmed:authorsCompleteYlld:pubmed
pubmed-article:7619802pubmed:pagination9028-37lld:pubmed
pubmed-article:7619802pubmed:dateRevised2006-11-15lld:pubmed
pubmed-article:7619802pubmed:meshHeadingpubmed-meshheading:7619802-...lld:pubmed
pubmed-article:7619802pubmed:meshHeadingpubmed-meshheading:7619802-...lld:pubmed
pubmed-article:7619802pubmed:meshHeadingpubmed-meshheading:7619802-...lld:pubmed
pubmed-article:7619802pubmed:meshHeadingpubmed-meshheading:7619802-...lld:pubmed
pubmed-article:7619802pubmed:meshHeadingpubmed-meshheading:7619802-...lld:pubmed
pubmed-article:7619802pubmed:meshHeadingpubmed-meshheading:7619802-...lld:pubmed
pubmed-article:7619802pubmed:meshHeadingpubmed-meshheading:7619802-...lld:pubmed
pubmed-article:7619802pubmed:meshHeadingpubmed-meshheading:7619802-...lld:pubmed
pubmed-article:7619802pubmed:meshHeadingpubmed-meshheading:7619802-...lld:pubmed
pubmed-article:7619802pubmed:meshHeadingpubmed-meshheading:7619802-...lld:pubmed
pubmed-article:7619802pubmed:meshHeadingpubmed-meshheading:7619802-...lld:pubmed
pubmed-article:7619802pubmed:meshHeadingpubmed-meshheading:7619802-...lld:pubmed
pubmed-article:7619802pubmed:year1995lld:pubmed
pubmed-article:7619802pubmed:articleTitleReaction with cyanide of hydroxylamine oxidoreductase of Nitrosomonas europaea.lld:pubmed
pubmed-article:7619802pubmed:affiliationDepartment of Genetics and Cell Biology, University of Minnesota, St. Paul 55108, USA.lld:pubmed
pubmed-article:7619802pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:7619802pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed