pubmed-article:35468 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:35468 | lifeskim:mentions | umls-concept:C1167395 | lld:lifeskim |
pubmed-article:35468 | lifeskim:mentions | umls-concept:C0027950 | lld:lifeskim |
pubmed-article:35468 | lifeskim:mentions | umls-concept:C0542341 | lld:lifeskim |
pubmed-article:35468 | lifeskim:mentions | umls-concept:C0683598 | lld:lifeskim |
pubmed-article:35468 | pubmed:issue | 2 | lld:pubmed |
pubmed-article:35468 | pubmed:dateCreated | 1979-7-25 | lld:pubmed |
pubmed-article:35468 | pubmed:abstractText | The part played by the phagocytic cells against invading pathogens has been known since the work of Metchnikoff nearly a century ago. This review deals primarily with the role of the neutrophilic polymorphonuclear leukocyte in host defense against microbial infections. The overall function of these cells in protection from infection is dependent on a number of steps. First, an adequate number of functionally mature neutrophils have to be produced and released into the circulation by the bone marrow. Cells must circulate normally and be capable of adhering to capillary and venule walls overlying inflammatory sites. The next step involves the exit of phagocytes from the blood stream through the capillary wall and emigration into the tissues to establish contact with the invading pathogens. This process is accomplished by the locomotive characteristics of these cells and chemotaxis. Most organisms must then be phagocytized to be killed. Two discrete phases are involved in phagocytosis; the "recognition" and attachment phase followed by the ingestion phase. After phagocytosis a series of coordinated morphologic and biochemical events are set into motion which leads to eventual death and lysis of the ingested microbes. A variety of antimicrobial mechanisms are involved in this final step and indicate that these cells have an appreciable reserve capacity if one mechanism is impaired. Recent evidence which clarifies mechanisms involved in all these stages is discussed. | lld:pubmed |
pubmed-article:35468 | pubmed:language | eng | lld:pubmed |
pubmed-article:35468 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:35468 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:35468 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:35468 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:35468 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:35468 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:35468 | pubmed:issn | 0300-8126 | lld:pubmed |
pubmed-article:35468 | pubmed:author | pubmed-author:RootR KRK | lld:pubmed |
pubmed-article:35468 | pubmed:author | pubmed-author:BlockL HLH | lld:pubmed |
pubmed-article:35468 | pubmed:author | pubmed-author:ZakhirehBB | lld:pubmed |
pubmed-article:35468 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:35468 | pubmed:volume | 7 | lld:pubmed |
pubmed-article:35468 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:35468 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:35468 | pubmed:pagination | 88-98 | lld:pubmed |
pubmed-article:35468 | pubmed:dateRevised | 2011-11-17 | lld:pubmed |
pubmed-article:35468 | pubmed:meshHeading | pubmed-meshheading:35468-Hu... | lld:pubmed |
pubmed-article:35468 | pubmed:meshHeading | pubmed-meshheading:35468-An... | lld:pubmed |
pubmed-article:35468 | pubmed:meshHeading | pubmed-meshheading:35468-Ph... | lld:pubmed |
pubmed-article:35468 | pubmed:meshHeading | pubmed-meshheading:35468-Ph... | lld:pubmed |
pubmed-article:35468 | pubmed:meshHeading | pubmed-meshheading:35468-Hy... | lld:pubmed |
pubmed-article:35468 | pubmed:meshHeading | pubmed-meshheading:35468-Ox... | lld:pubmed |
pubmed-article:35468 | pubmed:meshHeading | pubmed-meshheading:35468-Pe... | lld:pubmed |
pubmed-article:35468 | pubmed:meshHeading | pubmed-meshheading:35468-Mu... | lld:pubmed |
pubmed-article:35468 | pubmed:meshHeading | pubmed-meshheading:35468-Mo... | lld:pubmed |
pubmed-article:35468 | pubmed:meshHeading | pubmed-meshheading:35468-He... | lld:pubmed |
pubmed-article:35468 | pubmed:meshHeading | pubmed-meshheading:35468-Ma... | lld:pubmed |
pubmed-article:35468 | pubmed:meshHeading | pubmed-meshheading:35468-Ce... | lld:pubmed |
pubmed-article:35468 | pubmed:meshHeading | pubmed-meshheading:35468-Cy... | lld:pubmed |
pubmed-article:35468 | pubmed:meshHeading | pubmed-meshheading:35468-Pr... | lld:pubmed |
pubmed-article:35468 | pubmed:meshHeading | pubmed-meshheading:35468-Ne... | lld:pubmed |
pubmed-article:35468 | pubmed:meshHeading | pubmed-meshheading:35468-Im... | lld:pubmed |
pubmed-article:35468 | pubmed:meshHeading | pubmed-meshheading:35468-La... | lld:pubmed |
pubmed-article:35468 | pubmed:meshHeading | pubmed-meshheading:35468-Ch... | lld:pubmed |
pubmed-article:35468 | pubmed:year | 1979 | lld:pubmed |
pubmed-article:35468 | pubmed:articleTitle | Neutrophil function and host resistance. | lld:pubmed |
pubmed-article:35468 | pubmed:publicationType | Journal Article | lld:pubmed |