pubmed-article:3185410 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:3185410 | lifeskim:mentions | umls-concept:C0011923 | lld:lifeskim |
pubmed-article:3185410 | lifeskim:mentions | umls-concept:C0851346 | lld:lifeskim |
pubmed-article:3185410 | lifeskim:mentions | umls-concept:C0439742 | lld:lifeskim |
pubmed-article:3185410 | lifeskim:mentions | umls-concept:C0033363 | lld:lifeskim |
pubmed-article:3185410 | lifeskim:mentions | umls-concept:C1947976 | lld:lifeskim |
pubmed-article:3185410 | lifeskim:mentions | umls-concept:C0043309 | lld:lifeskim |
pubmed-article:3185410 | lifeskim:mentions | umls-concept:C0870078 | lld:lifeskim |
pubmed-article:3185410 | lifeskim:mentions | umls-concept:C1519193 | lld:lifeskim |
pubmed-article:3185410 | pubmed:issue | 5 | lld:pubmed |
pubmed-article:3185410 | pubmed:dateCreated | 1988-12-19 | lld:pubmed |
pubmed-article:3185410 | pubmed:abstractText | In addition to the familiar problems of reduced contrast and signal-to-noise ratio (SNR) in the single energy case, dual-energy subtractions in the presence of scattered radiation suffer further degradations from: (1) artifacts due to nonuniform subtraction of scatter, and (2) a serious deterioration of the signal of interest. To determine the expected performance of scatter correcting schemes, we simulated energy subtractions performed in the presence of scatter. We discuss scatter's detrimental effects on contrast and SNR in these simulations and the expected improvements from scatter corrections to within 5% to 10%. We introduce two sampling schemes for the correction of scatter. Each scheme requires two measurements, and each involves placing an x-ray opaque sampling grid between the source and the object. In the first method, the grid is an array of lead disks present only during one measurement. Using these samples we generate an estimate of the scatter field and then subtract it from the second measurement yielding a scatter corrected image. In the second method, the grid is an array of lead strips present during both measurements but displaced between measurements by one-half of a strip spacing to completely sample the image. From the two measurements we generate an image to be corrected, an estimate of the scatter field, and a scatter corrected image. In phantom studies implemented on a digital fluoroscopy system, we observed for single energy images of blood vessel phantoms improved contrast and field uniformity. For scatter corrected selective material cancellations in human phantoms we observed improved contrast and significant reduction in artifacts. In both cases we observed no significant loss in SNR. These results facilitate the implementation of efficient large area detectors for dual-energy imaging. | lld:pubmed |
pubmed-article:3185410 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:3185410 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:3185410 | pubmed:language | eng | lld:pubmed |
pubmed-article:3185410 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:3185410 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:3185410 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:3185410 | pubmed:issn | 0094-2405 | lld:pubmed |
pubmed-article:3185410 | pubmed:author | pubmed-author:MacovskiAA | lld:pubmed |
pubmed-article:3185410 | pubmed:author | pubmed-author:WagnerF CFC | lld:pubmed |
pubmed-article:3185410 | pubmed:author | pubmed-author:NishimuraD... | lld:pubmed |
pubmed-article:3185410 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:3185410 | pubmed:volume | 15 | lld:pubmed |
pubmed-article:3185410 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:3185410 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:3185410 | pubmed:pagination | 732-48 | lld:pubmed |
pubmed-article:3185410 | pubmed:dateRevised | 2008-11-21 | lld:pubmed |
pubmed-article:3185410 | pubmed:meshHeading | pubmed-meshheading:3185410-... | lld:pubmed |
pubmed-article:3185410 | pubmed:meshHeading | pubmed-meshheading:3185410-... | lld:pubmed |
pubmed-article:3185410 | pubmed:meshHeading | pubmed-meshheading:3185410-... | lld:pubmed |
pubmed-article:3185410 | pubmed:meshHeading | pubmed-meshheading:3185410-... | lld:pubmed |
pubmed-article:3185410 | pubmed:meshHeading | pubmed-meshheading:3185410-... | lld:pubmed |
pubmed-article:3185410 | pubmed:meshHeading | pubmed-meshheading:3185410-... | lld:pubmed |
pubmed-article:3185410 | pubmed:meshHeading | pubmed-meshheading:3185410-... | lld:pubmed |
pubmed-article:3185410 | pubmed:meshHeading | pubmed-meshheading:3185410-... | lld:pubmed |
pubmed-article:3185410 | pubmed:meshHeading | pubmed-meshheading:3185410-... | lld:pubmed |
pubmed-article:3185410 | pubmed:meshHeading | pubmed-meshheading:3185410-... | lld:pubmed |
pubmed-article:3185410 | pubmed:articleTitle | Dual-energy x-ray projection imaging: two sampling schemes for the correction of scattered radiation. | lld:pubmed |
pubmed-article:3185410 | pubmed:affiliation | Information Systems Laboratory, Stanford University, California 94305-4055. | lld:pubmed |
pubmed-article:3185410 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:3185410 | pubmed:publicationType | Research Support, U.S. Gov't, P.H.S. | lld:pubmed |
pubmed-article:3185410 | pubmed:publicationType | Research Support, U.S. Gov't, Non-P.H.S. | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:3185410 | lld:pubmed |