pubmed-article:3087971 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:3087971 | lifeskim:mentions | umls-concept:C0086418 | lld:lifeskim |
pubmed-article:3087971 | lifeskim:mentions | umls-concept:C0014442 | lld:lifeskim |
pubmed-article:3087971 | lifeskim:mentions | umls-concept:C0017205 | lld:lifeskim |
pubmed-article:3087971 | lifeskim:mentions | umls-concept:C0017768 | lld:lifeskim |
pubmed-article:3087971 | lifeskim:mentions | umls-concept:C0205307 | lld:lifeskim |
pubmed-article:3087971 | lifeskim:mentions | umls-concept:C0205177 | lld:lifeskim |
pubmed-article:3087971 | lifeskim:mentions | umls-concept:C1524063 | lld:lifeskim |
pubmed-article:3087971 | lifeskim:mentions | umls-concept:C0110594 | lld:lifeskim |
pubmed-article:3087971 | lifeskim:mentions | umls-concept:C0243072 | lld:lifeskim |
pubmed-article:3087971 | pubmed:issue | 18 | lld:pubmed |
pubmed-article:3087971 | pubmed:dateCreated | 1986-7-28 | lld:pubmed |
pubmed-article:3087971 | pubmed:abstractText | Human acid beta-glucosidase (glucosylceramidase; EC 3.2.1.45) cleaves the glycosidic bonds of glucosyl ceramide and synthetic beta-glucosides. Conduritol B epoxide (CBE) and its brominated derivative are mechanism-based inhibitors which bind covalently to the catalytic site of acid beta-glucosidase. Procedures using brominetritiated CBE and monospecific anti-human placental acid beta-glucosidase IgG were developed to determine the molar concentrations of functional acid beta-glucosidase catalytic sites in pure placental enzyme preparations from normal sources; kcat values then were calculated from Vmax = [Et]kcat using glucosyl ceramide substrates with dodecanoyl (2135 +/- 45 min-1) and hexanoyl (3200 +/- 410 min-1) fatty acid acyl chains and 4-alkyl-umbelliferyl beta-glucoside substrates with methyl (2235 +/- 197 min-1), heptyl (1972 +/- 152 min-1), nonyl (2220 +/- 247 min-1), and undecyl (773 +/- 44 min-1) alkyl chains. The respective kcat values for acid beta-glucosidase in a crude normal splenic preparation were about 60% of these values. In comparison, the kcat values of the mutant splenic acid beta-glucosidase from two Type 1 Ashkenazi Jewish Gaucher disease (AJGD) patients were about 1.5-3-fold decreased and had Km values for each substrate which were similar to those for the normal acid beta-glucosidase. The interaction of the normal and Type 1 AJGD enzymes with CBE in a 1:1 stoichiometry conformed to a model with reversible EI complexes formed prior to covalent inactivation. With CBE, the equal kmax values (maximal rate of inactivation) for the normal (0.051 +/- 0.009 min-1) and Type 1 AJGD (0.058 +/- 0.016 min-1) enzymes were consistent with the minor differences in kcat. In contrast, the Ki value (dissociation constant) (839 +/- 64 microM) for the Type 1 AJGD enzymes was about 5 times the normal Ki value (166 +/- 57 microM). These results indicated that the catalytically active Type 1 AJGD acid beta-glucosidase had nearly normal hydrolytic capacity and suggested an amino acid substitution in or near the acid beta-glucosidase active site leading to an in vivo instability of the mutant enzymatic activity. | lld:pubmed |
pubmed-article:3087971 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:3087971 | pubmed:language | eng | lld:pubmed |
pubmed-article:3087971 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:3087971 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:3087971 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:3087971 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:3087971 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:3087971 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:3087971 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:3087971 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:3087971 | pubmed:month | Jun | lld:pubmed |
pubmed-article:3087971 | pubmed:issn | 0021-9258 | lld:pubmed |
pubmed-article:3087971 | pubmed:author | pubmed-author:DesnickR JRJ | lld:pubmed |
pubmed-article:3087971 | pubmed:author | pubmed-author:GattSS | lld:pubmed |
pubmed-article:3087971 | pubmed:author | pubmed-author:LeglerGG | lld:pubmed |
pubmed-article:3087971 | pubmed:author | pubmed-author:DinurTT | lld:pubmed |
pubmed-article:3087971 | pubmed:author | pubmed-author:FabbroDD | lld:pubmed |
pubmed-article:3087971 | pubmed:author | pubmed-author:GrabowskiG... | lld:pubmed |
pubmed-article:3087971 | pubmed:author | pubmed-author:Osiecki-Newma... | lld:pubmed |
pubmed-article:3087971 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:3087971 | pubmed:day | 25 | lld:pubmed |
pubmed-article:3087971 | pubmed:volume | 261 | lld:pubmed |
pubmed-article:3087971 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:3087971 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:3087971 | pubmed:pagination | 8263-9 | lld:pubmed |
pubmed-article:3087971 | pubmed:dateRevised | 2007-11-14 | lld:pubmed |
pubmed-article:3087971 | pubmed:meshHeading | pubmed-meshheading:3087971-... | lld:pubmed |
pubmed-article:3087971 | pubmed:meshHeading | pubmed-meshheading:3087971-... | lld:pubmed |
pubmed-article:3087971 | pubmed:meshHeading | pubmed-meshheading:3087971-... | lld:pubmed |
pubmed-article:3087971 | pubmed:meshHeading | pubmed-meshheading:3087971-... | lld:pubmed |
pubmed-article:3087971 | pubmed:meshHeading | pubmed-meshheading:3087971-... | lld:pubmed |
pubmed-article:3087971 | pubmed:meshHeading | pubmed-meshheading:3087971-... | lld:pubmed |
pubmed-article:3087971 | pubmed:meshHeading | pubmed-meshheading:3087971-... | lld:pubmed |
pubmed-article:3087971 | pubmed:meshHeading | pubmed-meshheading:3087971-... | lld:pubmed |
pubmed-article:3087971 | pubmed:meshHeading | pubmed-meshheading:3087971-... | lld:pubmed |
pubmed-article:3087971 | pubmed:year | 1986 | lld:pubmed |
pubmed-article:3087971 | pubmed:articleTitle | Human acid beta-glucosidase. Use of conduritol B epoxide derivatives to investigate the catalytically active normal and Gaucher disease enzymes. | lld:pubmed |
pubmed-article:3087971 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:3087971 | pubmed:publicationType | Research Support, U.S. Gov't, P.H.S. | lld:pubmed |
pubmed-article:3087971 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:3087971 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:3087971 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:3087971 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:3087971 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:3087971 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:3087971 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:3087971 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:3087971 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:3087971 | lld:pubmed |