Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:21392778rdf:typepubmed:Citationlld:pubmed
pubmed-article:21392778lifeskim:mentionsumls-concept:C0237868lld:lifeskim
pubmed-article:21392778lifeskim:mentionsumls-concept:C0012854lld:lifeskim
pubmed-article:21392778lifeskim:mentionsumls-concept:C0220781lld:lifeskim
pubmed-article:21392778lifeskim:mentionsumls-concept:C1883254lld:lifeskim
pubmed-article:21392778lifeskim:mentionsumls-concept:C1449577lld:lifeskim
pubmed-article:21392778lifeskim:mentionsumls-concept:C1880022lld:lifeskim
pubmed-article:21392778lifeskim:mentionsumls-concept:C1512006lld:lifeskim
pubmed-article:21392778lifeskim:mentionsumls-concept:C0301360lld:lifeskim
pubmed-article:21392778pubmed:issue2lld:pubmed
pubmed-article:21392778pubmed:dateCreated2011-3-28lld:pubmed
pubmed-article:21392778pubmed:abstractTextThermo-responsive polymer "nanogels" (crosslinked hydrogel particles with sub-100 nm diameters) are intriguing for many potential applications in biotechnology and medicine. There have been relatively few reports of electrostatically neutral, thermosensitive nanogels comprising a high fraction of hydrophilic co-monomer. Here we demonstrate the syntheses and characterization of novel, non-ionic nanogels based on random N,N-diethylacrylamide (DEA)/N,N-dimethylacrylamide (DMA) copolymers, made by free-radical, surfactant-free dispersion polymerization. The volume-phase transition temperatures of these DEA/DMA nanogels are strongly affected by co-monomer composition, providing a way to "tune" the phase transition temperature of these non-ionic nanogels. While DEA nanogels (comprising no DMA) can be obtained at 70 °C by standard emulsion precipitation, DEA/DMA random co-polymer nanogels can be obtained only in a particular range of temperatures, above the initial phase transition temperature and below the critical precipitation temperature of the DEA/DMA copolymer, controlled by co-monomer composition. Increasing percentages of DMA in the nanogels raises the phase transition temperature, and attenuates and broadens it as well. We find that concentrated DEA/DMA nanogel dispersions are optically clear at room temperature. This good optical clarity was exploited for their use in a novel DNA sieving matrix for microfluidic chip electrophoresis. An ultrafast, high-efficiency dsDNA separation was achieved in less than 120 s for dsDNA ranging from 75 bp to 15,000 bp.lld:pubmed
pubmed-article:21392778pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21392778pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21392778pubmed:languageenglld:pubmed
pubmed-article:21392778pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21392778pubmed:citationSubsetIMlld:pubmed
pubmed-article:21392778pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21392778pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21392778pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21392778pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21392778pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21392778pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21392778pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21392778pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21392778pubmed:statusMEDLINElld:pubmed
pubmed-article:21392778pubmed:monthMaylld:pubmed
pubmed-article:21392778pubmed:issn1095-7103lld:pubmed
pubmed-article:21392778pubmed:authorpubmed-author:BarronAnnelis...lld:pubmed
pubmed-article:21392778pubmed:authorpubmed-author:LuXihuaXlld:pubmed
pubmed-article:21392778pubmed:authorpubmed-author:SunMingyunMlld:pubmed
pubmed-article:21392778pubmed:copyrightInfoCopyright © 2011 Elsevier Inc. All rights reserved.lld:pubmed
pubmed-article:21392778pubmed:issnTypeElectroniclld:pubmed
pubmed-article:21392778pubmed:day15lld:pubmed
pubmed-article:21392778pubmed:volume357lld:pubmed
pubmed-article:21392778pubmed:ownerNLMlld:pubmed
pubmed-article:21392778pubmed:authorsCompleteYlld:pubmed
pubmed-article:21392778pubmed:pagination345-53lld:pubmed
pubmed-article:21392778pubmed:dateRevised2011-9-26lld:pubmed
pubmed-article:21392778pubmed:meshHeadingpubmed-meshheading:21392778...lld:pubmed
pubmed-article:21392778pubmed:meshHeadingpubmed-meshheading:21392778...lld:pubmed
pubmed-article:21392778pubmed:meshHeadingpubmed-meshheading:21392778...lld:pubmed
pubmed-article:21392778pubmed:meshHeadingpubmed-meshheading:21392778...lld:pubmed
pubmed-article:21392778pubmed:meshHeadingpubmed-meshheading:21392778...lld:pubmed
pubmed-article:21392778pubmed:meshHeadingpubmed-meshheading:21392778...lld:pubmed
pubmed-article:21392778pubmed:meshHeadingpubmed-meshheading:21392778...lld:pubmed
pubmed-article:21392778pubmed:meshHeadingpubmed-meshheading:21392778...lld:pubmed
pubmed-article:21392778pubmed:meshHeadingpubmed-meshheading:21392778...lld:pubmed
pubmed-article:21392778pubmed:meshHeadingpubmed-meshheading:21392778...lld:pubmed
pubmed-article:21392778pubmed:year2011lld:pubmed
pubmed-article:21392778pubmed:articleTitleNon-ionic, thermo-responsive DEA/DMA nanogels: synthesis, characterization, and use for DNA separations by microchip electrophoresis.lld:pubmed
pubmed-article:21392778pubmed:affiliationDepartment of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA. xhlu2002@gmail.comlld:pubmed
pubmed-article:21392778pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:21392778pubmed:publicationTypeResearch Support, U.S. Gov't, Non-P.H.S.lld:pubmed
pubmed-article:21392778pubmed:publicationTypeResearch Support, N.I.H., Extramurallld:pubmed