pubmed-article:21181133 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:21181133 | lifeskim:mentions | umls-concept:C0153381 | lld:lifeskim |
pubmed-article:21181133 | lifeskim:mentions | umls-concept:C0014597 | lld:lifeskim |
pubmed-article:21181133 | lifeskim:mentions | umls-concept:C0442027 | lld:lifeskim |
pubmed-article:21181133 | lifeskim:mentions | umls-concept:C0334227 | lld:lifeskim |
pubmed-article:21181133 | lifeskim:mentions | umls-concept:C0242485 | lld:lifeskim |
pubmed-article:21181133 | lifeskim:mentions | umls-concept:C0013790 | lld:lifeskim |
pubmed-article:21181133 | lifeskim:mentions | umls-concept:C0442828 | lld:lifeskim |
pubmed-article:21181133 | pubmed:issue | 5 | lld:pubmed |
pubmed-article:21181133 | pubmed:dateCreated | 2011-1-25 | lld:pubmed |
pubmed-article:21181133 | pubmed:abstractText | In this study, electrical impedance-based measurements were used to distinguish oral cancer cells and non-cancer oral epithelial cells based on their cellular activities on the microelectrodes in a real-time and label-free manner. CAL 27 and Het-1A cell lines were used as the models of oral cancer cells and non-cancer oral epithelial cells, respectively. Various cellular activities, including cell adhesion, spreading, and proliferation were monitored. We found that both the kinetics of cell spreading and the static impedance-based cell index were feasible to distinguish the two cell types. At each given cell number, CAL 27 cell spreading produced a smaller cell index change rate that was 60-70% of those of Het-1A cells. When cells were fully spread, CAL 27 cells generated a cell index more than four times greater than that of Het-1A cells. Since cell spreading and attachment occurs in the first few hours when they were cultured on the microelectrodes, this impedance-based method could be a rapid label-free and non-invasive approach to distinguish oral cancer cells from non-cancer oral epithelial cells. Cell viability analysis was performed along with the impedance-based analysis. Confocal microscopic imaging analysis showed the difference in cell morphology and the thickness of cell monolayers between the two cell types. | lld:pubmed |
pubmed-article:21181133 | pubmed:language | eng | lld:pubmed |
pubmed-article:21181133 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21181133 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:21181133 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:21181133 | pubmed:month | Feb | lld:pubmed |
pubmed-article:21181133 | pubmed:issn | 1618-2650 | lld:pubmed |
pubmed-article:21181133 | pubmed:author | pubmed-author:YangLijuL | lld:pubmed |
pubmed-article:21181133 | pubmed:author | pubmed-author:AriasL... | lld:pubmed |
pubmed-article:21181133 | pubmed:author | pubmed-author:MamouniJaouad... | lld:pubmed |
pubmed-article:21181133 | pubmed:author | pubmed-author:LaneTonya STS | lld:pubmed |
pubmed-article:21181133 | pubmed:author | pubmed-author:YanceyMartez... | lld:pubmed |
pubmed-article:21181133 | pubmed:issnType | Electronic | lld:pubmed |
pubmed-article:21181133 | pubmed:volume | 399 | lld:pubmed |
pubmed-article:21181133 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:21181133 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:21181133 | pubmed:pagination | 1823-33 | lld:pubmed |
pubmed-article:21181133 | pubmed:meshHeading | pubmed-meshheading:21181133... | lld:pubmed |
pubmed-article:21181133 | pubmed:meshHeading | pubmed-meshheading:21181133... | lld:pubmed |
pubmed-article:21181133 | pubmed:meshHeading | pubmed-meshheading:21181133... | lld:pubmed |
pubmed-article:21181133 | pubmed:meshHeading | pubmed-meshheading:21181133... | lld:pubmed |
pubmed-article:21181133 | pubmed:meshHeading | pubmed-meshheading:21181133... | lld:pubmed |
pubmed-article:21181133 | pubmed:meshHeading | pubmed-meshheading:21181133... | lld:pubmed |
pubmed-article:21181133 | pubmed:meshHeading | pubmed-meshheading:21181133... | lld:pubmed |
pubmed-article:21181133 | pubmed:meshHeading | pubmed-meshheading:21181133... | lld:pubmed |
pubmed-article:21181133 | pubmed:meshHeading | pubmed-meshheading:21181133... | lld:pubmed |
pubmed-article:21181133 | pubmed:meshHeading | pubmed-meshheading:21181133... | lld:pubmed |
pubmed-article:21181133 | pubmed:meshHeading | pubmed-meshheading:21181133... | lld:pubmed |
pubmed-article:21181133 | pubmed:meshHeading | pubmed-meshheading:21181133... | lld:pubmed |
pubmed-article:21181133 | pubmed:year | 2011 | lld:pubmed |
pubmed-article:21181133 | pubmed:articleTitle | Real-time electrical impedance-based measurement to distinguish oral cancer cells and non-cancer oral epithelial cells. | lld:pubmed |
pubmed-article:21181133 | pubmed:affiliation | Biomanufacturing Research Institute and Technology Enterprises (BRITE) and Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA. lyang@nccu.edu | lld:pubmed |
pubmed-article:21181133 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:21181133 | pubmed:publicationType | Research Support, U.S. Gov't, Non-P.H.S. | lld:pubmed |
pubmed-article:21181133 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |