pubmed-article:21117739 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:21117739 | lifeskim:mentions | umls-concept:C0946010 | lld:lifeskim |
pubmed-article:21117739 | lifeskim:mentions | umls-concept:C0439742 | lld:lifeskim |
pubmed-article:21117739 | lifeskim:mentions | umls-concept:C1264693 | lld:lifeskim |
pubmed-article:21117739 | lifeskim:mentions | umls-concept:C1881065 | lld:lifeskim |
pubmed-article:21117739 | lifeskim:mentions | umls-concept:C0946401 | lld:lifeskim |
pubmed-article:21117739 | lifeskim:mentions | umls-concept:C0332501 | lld:lifeskim |
pubmed-article:21117739 | lifeskim:mentions | umls-concept:C0037775 | lld:lifeskim |
pubmed-article:21117739 | lifeskim:mentions | umls-concept:C0001166 | lld:lifeskim |
pubmed-article:21117739 | pubmed:issue | 5 | lld:pubmed |
pubmed-article:21117739 | pubmed:dateCreated | 2010-12-1 | lld:pubmed |
pubmed-article:21117739 | pubmed:abstractText | A T-matrix formulation is presented to compute acoustic scattering from arbitrary, disjoint distributions of cylinders or spheres, each with arbitrary, uniform acoustic properties. The generalized approach exploits the similarities in these scattering problems to present a single system of equations that is easily specialized to cylindrical or spherical scatterers. By employing field expansions based on orthogonal harmonic functions, continuity of pressure and normal particle velocity are directly enforced at each scatterer using diagonal, analytic expressions to eliminate the need for integral equations. The effect of a cylinder or sphere that encloses all other scatterers is simulated with an outer iterative procedure that decouples the inner-object solution from the effect of the enclosing object to improve computational efficiency when interactions among the interior objects are significant. Numerical results establish the validity and efficiency of the outer iteration procedure for nested objects. Two- and three-dimensional methods that employ this outer iteration are used to measure and characterize the accuracy of two-dimensional approximations to three-dimensional scattering of elevation-focused beams. | lld:pubmed |
pubmed-article:21117739 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21117739 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21117739 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21117739 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21117739 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21117739 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21117739 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21117739 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21117739 | pubmed:language | eng | lld:pubmed |
pubmed-article:21117739 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:21117739 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:21117739 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:21117739 | pubmed:month | May | lld:pubmed |
pubmed-article:21117739 | pubmed:issn | 1520-8524 | lld:pubmed |
pubmed-article:21117739 | pubmed:author | pubmed-author:WaagRobert... | lld:pubmed |
pubmed-article:21117739 | pubmed:author | pubmed-author:AstheimerJeff... | lld:pubmed |
pubmed-article:21117739 | pubmed:author | pubmed-author:HesfordAndrew... | lld:pubmed |
pubmed-article:21117739 | pubmed:issnType | Electronic | lld:pubmed |
pubmed-article:21117739 | pubmed:volume | 127 | lld:pubmed |
pubmed-article:21117739 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:21117739 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:21117739 | pubmed:pagination | 2883-93 | lld:pubmed |
pubmed-article:21117739 | pubmed:dateRevised | 2011-7-28 | lld:pubmed |
pubmed-article:21117739 | pubmed:meshHeading | pubmed-meshheading:21117739... | lld:pubmed |
pubmed-article:21117739 | pubmed:meshHeading | pubmed-meshheading:21117739... | lld:pubmed |
pubmed-article:21117739 | pubmed:meshHeading | pubmed-meshheading:21117739... | lld:pubmed |
pubmed-article:21117739 | pubmed:meshHeading | pubmed-meshheading:21117739... | lld:pubmed |
pubmed-article:21117739 | pubmed:meshHeading | pubmed-meshheading:21117739... | lld:pubmed |
pubmed-article:21117739 | pubmed:meshHeading | pubmed-meshheading:21117739... | lld:pubmed |
pubmed-article:21117739 | pubmed:meshHeading | pubmed-meshheading:21117739... | lld:pubmed |
pubmed-article:21117739 | pubmed:meshHeading | pubmed-meshheading:21117739... | lld:pubmed |
pubmed-article:21117739 | pubmed:meshHeading | pubmed-meshheading:21117739... | lld:pubmed |
pubmed-article:21117739 | pubmed:meshHeading | pubmed-meshheading:21117739... | lld:pubmed |
pubmed-article:21117739 | pubmed:meshHeading | pubmed-meshheading:21117739... | lld:pubmed |
pubmed-article:21117739 | pubmed:meshHeading | pubmed-meshheading:21117739... | lld:pubmed |
pubmed-article:21117739 | pubmed:year | 2010 | lld:pubmed |
pubmed-article:21117739 | pubmed:articleTitle | Acoustic scattering by arbitrary distributions of disjoint, homogeneous cylinders or spheres. | lld:pubmed |
pubmed-article:21117739 | pubmed:affiliation | Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627, USA. hesford@ece.rochester.edu | lld:pubmed |
pubmed-article:21117739 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:21117739 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |
pubmed-article:21117739 | pubmed:publicationType | Research Support, N.I.H., Extramural | lld:pubmed |