Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:21033788rdf:typepubmed:Citationlld:pubmed
pubmed-article:21033788lifeskim:mentionsumls-concept:C0205384lld:lifeskim
pubmed-article:21033788lifeskim:mentionsumls-concept:C1264633lld:lifeskim
pubmed-article:21033788lifeskim:mentionsumls-concept:C0680977lld:lifeskim
pubmed-article:21033788lifeskim:mentionsumls-concept:C0039778lld:lifeskim
pubmed-article:21033788lifeskim:mentionsumls-concept:C1517004lld:lifeskim
pubmed-article:21033788pubmed:issue16lld:pubmed
pubmed-article:21033788pubmed:dateCreated2010-11-1lld:pubmed
pubmed-article:21033788pubmed:abstractTextWe report joint experimental and theoretical studies of outcomes resulting from the nonreactive quenching of electronically excited OD?A? (2)?(+) by H(2). The experiments utilize a pump-probe technique to detect the OD?X? (2)? product state distribution under single collision conditions. The OD?X ?(2)? products are observed primarily in their lowest vibrational state (v(") = 0) with substantially less population in v(") = 1. The OD?X? (2)? products are generated with a high degree of rotational excitation, peaking at N(") = 21 with an average rotational energy of 4600 cm(-1), and a strong propensity for populating the ?(A(')) ?-doublet component indicative of alignment of the half-filled p? orbital in the plane of OD rotation. Branching fraction measurements show that the nonreactive channel accounts for less than 20% of quenching outcomes. Complementary classical trajectory calculations of the postquenching dynamics are initiated from representative points along seams of conical intersections between the ground and excited-state potentials of OD(A? (2)?(+),X? (2)?) + H(2). Diabatic modeling of the initial momenta in the dynamical calculations captures the key experimental trends: OD?X ?(2)? products released primarily in their ground vibrational state with extensive rotational excitation and a branching ratio that strongly favors reactive quenching. The OD?A? (2)?(+) + H(2) results are also compared with previous studies on the quenching of OH?A ?(2)?(+) + H(2); the two experimental studies show remarkably similar rotational energy distributions for the OH and OD?X ?(2)? radical products.lld:pubmed
pubmed-article:21033788pubmed:languageenglld:pubmed
pubmed-article:21033788pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21033788pubmed:statusPubMed-not-MEDLINElld:pubmed
pubmed-article:21033788pubmed:monthOctlld:pubmed
pubmed-article:21033788pubmed:issn1089-7690lld:pubmed
pubmed-article:21033788pubmed:authorpubmed-author:BowmanJoel...lld:pubmed
pubmed-article:21033788pubmed:authorpubmed-author:LesterMarsha...lld:pubmed
pubmed-article:21033788pubmed:authorpubmed-author:DempseyLogan...lld:pubmed
pubmed-article:21033788pubmed:authorpubmed-author:FuBinaBlld:pubmed
pubmed-article:21033788pubmed:authorpubmed-author:KamarchikEuge...lld:pubmed
pubmed-article:21033788pubmed:authorpubmed-author:LehmanJulia...lld:pubmed
pubmed-article:21033788pubmed:issnTypeElectroniclld:pubmed
pubmed-article:21033788pubmed:day28lld:pubmed
pubmed-article:21033788pubmed:volume133lld:pubmed
pubmed-article:21033788pubmed:ownerNLMlld:pubmed
pubmed-article:21033788pubmed:authorsCompleteYlld:pubmed
pubmed-article:21033788pubmed:pagination164307lld:pubmed
pubmed-article:21033788pubmed:year2010lld:pubmed
pubmed-article:21033788pubmed:articleTitleCollisional quenching of OD A 2?+ by H2: experimental and theoretical studies of the state-resolved OD X 2? product distribution and branching fraction.lld:pubmed
pubmed-article:21033788pubmed:affiliationDepartment of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA.lld:pubmed
pubmed-article:21033788pubmed:publicationTypeJournal Articlelld:pubmed