pubmed-article:20708770 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:20708770 | lifeskim:mentions | umls-concept:C0599840 | lld:lifeskim |
pubmed-article:20708770 | lifeskim:mentions | umls-concept:C0086045 | lld:lifeskim |
pubmed-article:20708770 | lifeskim:mentions | umls-concept:C1704632 | lld:lifeskim |
pubmed-article:20708770 | lifeskim:mentions | umls-concept:C0871261 | lld:lifeskim |
pubmed-article:20708770 | lifeskim:mentions | umls-concept:C2911692 | lld:lifeskim |
pubmed-article:20708770 | lifeskim:mentions | umls-concept:C1706817 | lld:lifeskim |
pubmed-article:20708770 | lifeskim:mentions | umls-concept:C0392747 | lld:lifeskim |
pubmed-article:20708770 | lifeskim:mentions | umls-concept:C0337050 | lld:lifeskim |
pubmed-article:20708770 | lifeskim:mentions | umls-concept:C0392355 | lld:lifeskim |
pubmed-article:20708770 | lifeskim:mentions | umls-concept:C0814835 | lld:lifeskim |
pubmed-article:20708770 | pubmed:issue | 16 | lld:pubmed |
pubmed-article:20708770 | pubmed:dateCreated | 2010-9-27 | lld:pubmed |
pubmed-article:20708770 | pubmed:abstractText | The Water Framework Directive has caused a paradigm shift towards the integrated management of recreational water quality through the development of drainage basin-wide programmes of measures. This has increased the need for a cost-effective diagnostic tool capable of accurately predicting riverine faecal indicator organism (FIO) concentrations. This paper outlines the application of models developed to fulfil this need, which represent the first transferrable generic FIO models to be developed for the UK to incorporate direct measures of key FIO sources (namely human and livestock population data) as predictor variables. We apply a recently developed transfer methodology, which enables the quantification of geometric mean presumptive faecal coliforms and presumptive intestinal enterococci concentrations for base- and high-flow during the summer bathing season in unmonitored UK watercourses, to predict FIO concentrations in the Humber river basin district. Because the FIO models incorporate explanatory variables which allow the effects of policy measures which influence livestock stocking rates to be assessed, we carry out empirical analysis of the differential effects of seven land use management and policy instruments (fiscal constraint, production constraint, cost intervention, area intervention, demand-side constraint, input constraint, and micro-level land use management) all of which can be used to reduce riverine FIO concentrations. This research provides insights into FIO source apportionment, explores a selection of pollution remediation strategies and the spatial differentiation of land use policies which could be implemented to deliver river quality improvements. All of the policy tools we model reduce FIO concentrations in rivers but our research suggests that the installation of streamside fencing in intensive milk producing areas may be the single most effective land management strategy to reduce riverine microbial pollution. | lld:pubmed |
pubmed-article:20708770 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20708770 | pubmed:language | eng | lld:pubmed |
pubmed-article:20708770 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20708770 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:20708770 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:20708770 | pubmed:month | Sep | lld:pubmed |
pubmed-article:20708770 | pubmed:issn | 1879-2448 | lld:pubmed |
pubmed-article:20708770 | pubmed:author | pubmed-author:KayDavidD | lld:pubmed |
pubmed-article:20708770 | pubmed:author | pubmed-author:JonesPhilipP | lld:pubmed |
pubmed-article:20708770 | pubmed:author | pubmed-author:CrowtherJohnJ | lld:pubmed |
pubmed-article:20708770 | pubmed:author | pubmed-author:StapletonCarl... | lld:pubmed |
pubmed-article:20708770 | pubmed:author | pubmed-author:WyerMarkM | lld:pubmed |
pubmed-article:20708770 | pubmed:author | pubmed-author:PosenPaulette... | lld:pubmed |
pubmed-article:20708770 | pubmed:author | pubmed-author:BatemanIanI | lld:pubmed |
pubmed-article:20708770 | pubmed:author | pubmed-author:TzanopoulosJo... | lld:pubmed |
pubmed-article:20708770 | pubmed:author | pubmed-author:FezziCarloC | lld:pubmed |
pubmed-article:20708770 | pubmed:author | pubmed-author:HampsonDanyel... | lld:pubmed |
pubmed-article:20708770 | pubmed:copyrightInfo | Copyright © 2010 Elsevier Ltd. All rights reserved. | lld:pubmed |
pubmed-article:20708770 | pubmed:issnType | Electronic | lld:pubmed |
pubmed-article:20708770 | pubmed:volume | 44 | lld:pubmed |
pubmed-article:20708770 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:20708770 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:20708770 | pubmed:pagination | 4748-59 | lld:pubmed |
pubmed-article:20708770 | pubmed:meshHeading | pubmed-meshheading:20708770... | lld:pubmed |
pubmed-article:20708770 | pubmed:meshHeading | pubmed-meshheading:20708770... | lld:pubmed |
pubmed-article:20708770 | pubmed:meshHeading | pubmed-meshheading:20708770... | lld:pubmed |
pubmed-article:20708770 | pubmed:meshHeading | pubmed-meshheading:20708770... | lld:pubmed |
pubmed-article:20708770 | pubmed:meshHeading | pubmed-meshheading:20708770... | lld:pubmed |
pubmed-article:20708770 | pubmed:meshHeading | pubmed-meshheading:20708770... | lld:pubmed |
pubmed-article:20708770 | pubmed:meshHeading | pubmed-meshheading:20708770... | lld:pubmed |
pubmed-article:20708770 | pubmed:meshHeading | pubmed-meshheading:20708770... | lld:pubmed |
pubmed-article:20708770 | pubmed:meshHeading | pubmed-meshheading:20708770... | lld:pubmed |
pubmed-article:20708770 | pubmed:meshHeading | pubmed-meshheading:20708770... | lld:pubmed |
pubmed-article:20708770 | pubmed:meshHeading | pubmed-meshheading:20708770... | lld:pubmed |
pubmed-article:20708770 | pubmed:meshHeading | pubmed-meshheading:20708770... | lld:pubmed |
pubmed-article:20708770 | pubmed:meshHeading | pubmed-meshheading:20708770... | lld:pubmed |
pubmed-article:20708770 | pubmed:meshHeading | pubmed-meshheading:20708770... | lld:pubmed |
pubmed-article:20708770 | pubmed:meshHeading | pubmed-meshheading:20708770... | lld:pubmed |
pubmed-article:20708770 | pubmed:meshHeading | pubmed-meshheading:20708770... | lld:pubmed |
pubmed-article:20708770 | pubmed:meshHeading | pubmed-meshheading:20708770... | lld:pubmed |
pubmed-article:20708770 | pubmed:year | 2010 | lld:pubmed |
pubmed-article:20708770 | pubmed:articleTitle | Predicting microbial pollution concentrations in UK rivers in response to land use change. | lld:pubmed |
pubmed-article:20708770 | pubmed:affiliation | School of Environmental Sciences, University of East Anglia, Zuckerman Institute for Connective Environmental Research, Research Office 1.15, Norwich, Norfolk, NR4 7TJ, UK. d.hampson@uea.ac.uk | lld:pubmed |
pubmed-article:20708770 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:20708770 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |