Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:20426203rdf:typepubmed:Citationlld:pubmed
pubmed-article:20426203lifeskim:mentionsumls-concept:C0014563lld:lifeskim
pubmed-article:20426203lifeskim:mentionsumls-concept:C0267963lld:lifeskim
pubmed-article:20426203lifeskim:mentionsumls-concept:C0184511lld:lifeskim
pubmed-article:20426203lifeskim:mentionsumls-concept:C1511726lld:lifeskim
pubmed-article:20426203lifeskim:mentionsumls-concept:C2919017lld:lifeskim
pubmed-article:20426203lifeskim:mentionsumls-concept:C1420705lld:lifeskim
pubmed-article:20426203lifeskim:mentionsumls-concept:C0681842lld:lifeskim
pubmed-article:20426203lifeskim:mentionsumls-concept:C1947976lld:lifeskim
pubmed-article:20426203lifeskim:mentionsumls-concept:C0563533lld:lifeskim
pubmed-article:20426203pubmed:issuePt 2lld:pubmed
pubmed-article:20426203pubmed:dateCreated2010-4-29lld:pubmed
pubmed-article:20426203pubmed:abstractTextWe describe a method for atlas-based segmentation of structural MRI for calculation of magnetic fieldmaps. CT data sets are used to construct a probabilistic atlas of the head and corresponding MR is used to train a classifier that segments soft tissue, air, and bone. Subject-specific fieldmaps are computed from the segmentations using a perturbation field model. Previous work has shown that distortion in echo-planar images can be corrected using predicted fieldmaps. We obtain results that agree well with acquired fieldmaps: 90% of voxel shifts from predicted fieldmaps show subvoxel disagreement with those computed from acquired fieldmaps. In addition, our fieldmap predictions show statistically significant improvement following inclusion of the atlas.lld:pubmed
pubmed-article:20426203pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20426203pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20426203pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20426203pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20426203pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20426203pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20426203pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20426203pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20426203pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20426203pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20426203pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20426203pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20426203pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20426203pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20426203pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20426203pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20426203pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20426203pubmed:languageenglld:pubmed
pubmed-article:20426203pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20426203pubmed:citationSubsetIMlld:pubmed
pubmed-article:20426203pubmed:statusMEDLINElld:pubmed
pubmed-article:20426203pubmed:authorpubmed-author:JenkinsonMark...lld:pubmed
pubmed-article:20426203pubmed:authorpubmed-author:WellsWilliamW...lld:pubmed
pubmed-article:20426203pubmed:authorpubmed-author:PoyntonClareClld:pubmed
pubmed-article:20426203pubmed:volume12lld:pubmed
pubmed-article:20426203pubmed:ownerNLMlld:pubmed
pubmed-article:20426203pubmed:authorsCompleteYlld:pubmed
pubmed-article:20426203pubmed:pagination951-9lld:pubmed
pubmed-article:20426203pubmed:dateRevised2011-2-1lld:pubmed
pubmed-article:20426203pubmed:meshHeadingpubmed-meshheading:20426203...lld:pubmed
pubmed-article:20426203pubmed:meshHeadingpubmed-meshheading:20426203...lld:pubmed
pubmed-article:20426203pubmed:meshHeadingpubmed-meshheading:20426203...lld:pubmed
pubmed-article:20426203pubmed:meshHeadingpubmed-meshheading:20426203...lld:pubmed
pubmed-article:20426203pubmed:meshHeadingpubmed-meshheading:20426203...lld:pubmed
pubmed-article:20426203pubmed:meshHeadingpubmed-meshheading:20426203...lld:pubmed
pubmed-article:20426203pubmed:meshHeadingpubmed-meshheading:20426203...lld:pubmed
pubmed-article:20426203pubmed:meshHeadingpubmed-meshheading:20426203...lld:pubmed
pubmed-article:20426203pubmed:meshHeadingpubmed-meshheading:20426203...lld:pubmed
pubmed-article:20426203pubmed:meshHeadingpubmed-meshheading:20426203...lld:pubmed
pubmed-article:20426203pubmed:meshHeadingpubmed-meshheading:20426203...lld:pubmed
pubmed-article:20426203pubmed:year2009lld:pubmed
pubmed-article:20426203pubmed:articleTitleAtlas-based improved prediction of magnetic field inhomogeneity for distortion correction of EPI data.lld:pubmed
pubmed-article:20426203pubmed:affiliationComputer Science and Artificial Intelligence Lab, MIT, USA.lld:pubmed
pubmed-article:20426203pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:20426203pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
pubmed-article:20426203pubmed:publicationTypeResearch Support, N.I.H., Extramurallld:pubmed