pubmed-article:20426203 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:20426203 | lifeskim:mentions | umls-concept:C0014563 | lld:lifeskim |
pubmed-article:20426203 | lifeskim:mentions | umls-concept:C0267963 | lld:lifeskim |
pubmed-article:20426203 | lifeskim:mentions | umls-concept:C0184511 | lld:lifeskim |
pubmed-article:20426203 | lifeskim:mentions | umls-concept:C1511726 | lld:lifeskim |
pubmed-article:20426203 | lifeskim:mentions | umls-concept:C2919017 | lld:lifeskim |
pubmed-article:20426203 | lifeskim:mentions | umls-concept:C1420705 | lld:lifeskim |
pubmed-article:20426203 | lifeskim:mentions | umls-concept:C0681842 | lld:lifeskim |
pubmed-article:20426203 | lifeskim:mentions | umls-concept:C1947976 | lld:lifeskim |
pubmed-article:20426203 | lifeskim:mentions | umls-concept:C0563533 | lld:lifeskim |
pubmed-article:20426203 | pubmed:issue | Pt 2 | lld:pubmed |
pubmed-article:20426203 | pubmed:dateCreated | 2010-4-29 | lld:pubmed |
pubmed-article:20426203 | pubmed:abstractText | We describe a method for atlas-based segmentation of structural MRI for calculation of magnetic fieldmaps. CT data sets are used to construct a probabilistic atlas of the head and corresponding MR is used to train a classifier that segments soft tissue, air, and bone. Subject-specific fieldmaps are computed from the segmentations using a perturbation field model. Previous work has shown that distortion in echo-planar images can be corrected using predicted fieldmaps. We obtain results that agree well with acquired fieldmaps: 90% of voxel shifts from predicted fieldmaps show subvoxel disagreement with those computed from acquired fieldmaps. In addition, our fieldmap predictions show statistically significant improvement following inclusion of the atlas. | lld:pubmed |
pubmed-article:20426203 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20426203 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20426203 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20426203 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20426203 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20426203 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20426203 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20426203 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20426203 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20426203 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20426203 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20426203 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20426203 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20426203 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20426203 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20426203 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20426203 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20426203 | pubmed:language | eng | lld:pubmed |
pubmed-article:20426203 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20426203 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:20426203 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:20426203 | pubmed:author | pubmed-author:JenkinsonMark... | lld:pubmed |
pubmed-article:20426203 | pubmed:author | pubmed-author:WellsWilliamW... | lld:pubmed |
pubmed-article:20426203 | pubmed:author | pubmed-author:PoyntonClareC | lld:pubmed |
pubmed-article:20426203 | pubmed:volume | 12 | lld:pubmed |
pubmed-article:20426203 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:20426203 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:20426203 | pubmed:pagination | 951-9 | lld:pubmed |
pubmed-article:20426203 | pubmed:dateRevised | 2011-2-1 | lld:pubmed |
pubmed-article:20426203 | pubmed:meshHeading | pubmed-meshheading:20426203... | lld:pubmed |
pubmed-article:20426203 | pubmed:meshHeading | pubmed-meshheading:20426203... | lld:pubmed |
pubmed-article:20426203 | pubmed:meshHeading | pubmed-meshheading:20426203... | lld:pubmed |
pubmed-article:20426203 | pubmed:meshHeading | pubmed-meshheading:20426203... | lld:pubmed |
pubmed-article:20426203 | pubmed:meshHeading | pubmed-meshheading:20426203... | lld:pubmed |
pubmed-article:20426203 | pubmed:meshHeading | pubmed-meshheading:20426203... | lld:pubmed |
pubmed-article:20426203 | pubmed:meshHeading | pubmed-meshheading:20426203... | lld:pubmed |
pubmed-article:20426203 | pubmed:meshHeading | pubmed-meshheading:20426203... | lld:pubmed |
pubmed-article:20426203 | pubmed:meshHeading | pubmed-meshheading:20426203... | lld:pubmed |
pubmed-article:20426203 | pubmed:meshHeading | pubmed-meshheading:20426203... | lld:pubmed |
pubmed-article:20426203 | pubmed:meshHeading | pubmed-meshheading:20426203... | lld:pubmed |
pubmed-article:20426203 | pubmed:year | 2009 | lld:pubmed |
pubmed-article:20426203 | pubmed:articleTitle | Atlas-based improved prediction of magnetic field inhomogeneity for distortion correction of EPI data. | lld:pubmed |
pubmed-article:20426203 | pubmed:affiliation | Computer Science and Artificial Intelligence Lab, MIT, USA. | lld:pubmed |
pubmed-article:20426203 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:20426203 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |
pubmed-article:20426203 | pubmed:publicationType | Research Support, N.I.H., Extramural | lld:pubmed |