Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:20371407rdf:typepubmed:Citationlld:pubmed
pubmed-article:20371407lifeskim:mentionsumls-concept:C0013878lld:lifeskim
pubmed-article:20371407lifeskim:mentionsumls-concept:C0014406lld:lifeskim
pubmed-article:20371407lifeskim:mentionsumls-concept:C0205199lld:lifeskim
pubmed-article:20371407lifeskim:mentionsumls-concept:C0597177lld:lifeskim
pubmed-article:20371407lifeskim:mentionsumls-concept:C2698650lld:lifeskim
pubmed-article:20371407pubmed:issue6lld:pubmed
pubmed-article:20371407pubmed:dateCreated2010-11-16lld:pubmed
pubmed-article:20371407pubmed:abstractTextIn recent years, there has been a growing interest in the study of particle swarm optimization (PSO) in dynamic environments. This paper presents a new PSO model, called PSO with composite particles (PSO-CP), to address dynamic optimization problems. PSO-CP partitions the swarm into a set of composite particles based on their similarity using a "worst first" principle. Inspired by the composite particle phenomenon in physics, the elementary members in each composite particle interact via a velocity-anisotropic reflection scheme to integrate valuable information for effectively and rapidly finding the promising optima in the search space. Each composite particle maintains the diversity by a scattering operator. In addition, an integral movement strategy is introduced to promote the swarm diversity. Experiments on a typical dynamic test benchmark problem provide a guideline for setting the involved parameters and show that PSO-CP is efficient in comparison with several state-of-the-art PSO algorithms for dynamic optimization problems.lld:pubmed
pubmed-article:20371407pubmed:languageenglld:pubmed
pubmed-article:20371407pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20371407pubmed:citationSubsetIMlld:pubmed
pubmed-article:20371407pubmed:statusMEDLINElld:pubmed
pubmed-article:20371407pubmed:monthDeclld:pubmed
pubmed-article:20371407pubmed:issn1941-0492lld:pubmed
pubmed-article:20371407pubmed:authorpubmed-author:LiuLiliLlld:pubmed
pubmed-article:20371407pubmed:authorpubmed-author:WangDingweiDlld:pubmed
pubmed-article:20371407pubmed:authorpubmed-author:YangShengxian...lld:pubmed
pubmed-article:20371407pubmed:issnTypeElectroniclld:pubmed
pubmed-article:20371407pubmed:volume40lld:pubmed
pubmed-article:20371407pubmed:ownerNLMlld:pubmed
pubmed-article:20371407pubmed:authorsCompleteYlld:pubmed
pubmed-article:20371407pubmed:pagination1634-48lld:pubmed
pubmed-article:20371407pubmed:meshHeadingpubmed-meshheading:20371407...lld:pubmed
pubmed-article:20371407pubmed:meshHeadingpubmed-meshheading:20371407...lld:pubmed
pubmed-article:20371407pubmed:meshHeadingpubmed-meshheading:20371407...lld:pubmed
pubmed-article:20371407pubmed:meshHeadingpubmed-meshheading:20371407...lld:pubmed
pubmed-article:20371407pubmed:meshHeadingpubmed-meshheading:20371407...lld:pubmed
pubmed-article:20371407pubmed:meshHeadingpubmed-meshheading:20371407...lld:pubmed
pubmed-article:20371407pubmed:meshHeadingpubmed-meshheading:20371407...lld:pubmed
pubmed-article:20371407pubmed:meshHeadingpubmed-meshheading:20371407...lld:pubmed
pubmed-article:20371407pubmed:meshHeadingpubmed-meshheading:20371407...lld:pubmed
pubmed-article:20371407pubmed:year2010lld:pubmed
pubmed-article:20371407pubmed:articleTitleParticle swarm optimization with composite particles in dynamic environments.lld:pubmed
pubmed-article:20371407pubmed:affiliationCollege of Information Science and Engineering, Northeastern University, Shenyang 110004, China. liulili@ise.neu.edu.cnlld:pubmed
pubmed-article:20371407pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:20371407pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed