Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:20149672rdf:typepubmed:Citationlld:pubmed
pubmed-article:20149672lifeskim:mentionsumls-concept:C0008209lld:lifeskim
pubmed-article:20149672lifeskim:mentionsumls-concept:C0237753lld:lifeskim
pubmed-article:20149672lifeskim:mentionsumls-concept:C1710082lld:lifeskim
pubmed-article:20149672lifeskim:mentionsumls-concept:C0812409lld:lifeskim
pubmed-article:20149672lifeskim:mentionsumls-concept:C0012222lld:lifeskim
pubmed-article:20149672lifeskim:mentionsumls-concept:C0679083lld:lifeskim
pubmed-article:20149672pubmed:issue4-5lld:pubmed
pubmed-article:20149672pubmed:dateCreated2010-3-12lld:pubmed
pubmed-article:20149672pubmed:abstractTextA nondestructive test method for detecting chlorides in concrete has been developed based on prompt gamma neutron activation (PGNA). Its performance has been modeled using a hybrid MCNP/optical ray tracing approach. Since the chlorides often come from de-icing salts applied to the concrete surface, the Cl concentration has a non-linear depth profile which is typically modeled by the erfc function. The signals from this distribution have been simulated for several significant Cl capture peaks to estimate the erfc function parameters.lld:pubmed
pubmed-article:20149672pubmed:languageenglld:pubmed
pubmed-article:20149672pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20149672pubmed:citationSubsetIMlld:pubmed
pubmed-article:20149672pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20149672pubmed:statusMEDLINElld:pubmed
pubmed-article:20149672pubmed:issn1872-9800lld:pubmed
pubmed-article:20149672pubmed:authorpubmed-author:Al-SheikhlyMo...lld:pubmed
pubmed-article:20149672pubmed:authorpubmed-author:LivingstonRic...lld:pubmed
pubmed-article:20149672pubmed:authorpubmed-author:MohamedAli...lld:pubmed
pubmed-article:20149672pubmed:copyrightInfoCopyright 2010 Elsevier Ltd. All rights reserved.lld:pubmed
pubmed-article:20149672pubmed:issnTypeElectroniclld:pubmed
pubmed-article:20149672pubmed:volume68lld:pubmed
pubmed-article:20149672pubmed:ownerNLMlld:pubmed
pubmed-article:20149672pubmed:authorsCompleteYlld:pubmed
pubmed-article:20149672pubmed:pagination679-82lld:pubmed
pubmed-article:20149672pubmed:meshHeadingpubmed-meshheading:20149672...lld:pubmed
pubmed-article:20149672pubmed:meshHeadingpubmed-meshheading:20149672...lld:pubmed
pubmed-article:20149672pubmed:meshHeadingpubmed-meshheading:20149672...lld:pubmed
pubmed-article:20149672pubmed:meshHeadingpubmed-meshheading:20149672...lld:pubmed
pubmed-article:20149672pubmed:meshHeadingpubmed-meshheading:20149672...lld:pubmed
pubmed-article:20149672pubmed:meshHeadingpubmed-meshheading:20149672...lld:pubmed
pubmed-article:20149672pubmed:articleTitleNumerical simulation of the PGNA signal from chlorine diffusion gradients in concrete.lld:pubmed
pubmed-article:20149672pubmed:affiliationGraduate Program in Nuclear Engineering, A. James Clark School of Engineering, University of Maryland, College Park, MD 20742, USA. rliving1@umd.edulld:pubmed
pubmed-article:20149672pubmed:publicationTypeJournal Articlelld:pubmed