pubmed-article:19572403 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:19572403 | lifeskim:mentions | umls-concept:C0596171 | lld:lifeskim |
pubmed-article:19572403 | lifeskim:mentions | umls-concept:C1704353 | lld:lifeskim |
pubmed-article:19572403 | lifeskim:mentions | umls-concept:C0220825 | lld:lifeskim |
pubmed-article:19572403 | lifeskim:mentions | umls-concept:C1709694 | lld:lifeskim |
pubmed-article:19572403 | lifeskim:mentions | umls-concept:C2936618 | lld:lifeskim |
pubmed-article:19572403 | pubmed:issue | 4 | lld:pubmed |
pubmed-article:19572403 | pubmed:dateCreated | 2009-8-17 | lld:pubmed |
pubmed-article:19572403 | pubmed:abstractText | This article demonstrates the application of time-lapsed imaging and image processing to inform the supercritical processing of tissue scaffolds that are integral to many regenerative therapies. The methodology presented provides online quantitative evaluation of the complex process of scaffold formation in supercritical environments. The capabilities of the developed system are demonstrated through comparison of scaffolds formed from polymers with different molecular weight and with different venting times. Visual monitoring of scaffold fabrication enabled key events in the supercritical processing of the scaffolds to be identified including the onset of polymer plasticization, supercritical points and foam formation. Image processing of images acquired during the foaming process enabled quantitative tracking of the growing scaffold boundary that provided new insight into the nature of scaffold foaming. Further, this quantitative approach assisted in the comparison of different scaffold fabrication protocols. Observed differences in scaffold formation were found to persist, post-fabrication as evidenced by micro x-ray computed tomography (micro x-ray CT) images. It is concluded that time-lapsed imaging in combination with image processing is a convenient and powerful tool to provide insight into the scaffold fabrication process. | lld:pubmed |
pubmed-article:19572403 | pubmed:language | eng | lld:pubmed |
pubmed-article:19572403 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:19572403 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:19572403 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:19572403 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:19572403 | pubmed:issn | 1520-6033 | lld:pubmed |
pubmed-article:19572403 | pubmed:author | pubmed-author:HowdleSteven... | lld:pubmed |
pubmed-article:19572403 | pubmed:author | pubmed-author:ShakesheffKev... | lld:pubmed |
pubmed-article:19572403 | pubmed:author | pubmed-author:MatherMelissa... | lld:pubmed |
pubmed-article:19572403 | pubmed:author | pubmed-author:MorganStephen... | lld:pubmed |
pubmed-article:19572403 | pubmed:author | pubmed-author:WhiteLisa JLJ | lld:pubmed |
pubmed-article:19572403 | pubmed:author | pubmed-author:CroweJohn AJA | lld:pubmed |
pubmed-article:19572403 | pubmed:author | pubmed-author:BrionMichaelM | lld:pubmed |
pubmed-article:19572403 | pubmed:copyrightInfo | (c) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009. | lld:pubmed |
pubmed-article:19572403 | pubmed:issnType | Electronic | lld:pubmed |
pubmed-article:19572403 | pubmed:volume | 25 | lld:pubmed |
pubmed-article:19572403 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:19572403 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:19572403 | pubmed:pagination | 1176-83 | lld:pubmed |
pubmed-article:19572403 | pubmed:meshHeading | pubmed-meshheading:19572403... | lld:pubmed |
pubmed-article:19572403 | pubmed:meshHeading | pubmed-meshheading:19572403... | lld:pubmed |
pubmed-article:19572403 | pubmed:meshHeading | pubmed-meshheading:19572403... | lld:pubmed |
pubmed-article:19572403 | pubmed:meshHeading | pubmed-meshheading:19572403... | lld:pubmed |
pubmed-article:19572403 | pubmed:meshHeading | pubmed-meshheading:19572403... | lld:pubmed |
pubmed-article:19572403 | pubmed:meshHeading | pubmed-meshheading:19572403... | lld:pubmed |
pubmed-article:19572403 | pubmed:meshHeading | pubmed-meshheading:19572403... | lld:pubmed |
pubmed-article:19572403 | pubmed:meshHeading | pubmed-meshheading:19572403... | lld:pubmed |
pubmed-article:19572403 | pubmed:articleTitle | Time-lapsed imaging for in-process evaluation of supercritical fluid processing of tissue engineering scaffolds. | lld:pubmed |
pubmed-article:19572403 | pubmed:affiliation | Department of Electrical and Electronic Engineering, The University of Nottingham, University Park, Nottingham, UK. melissa.mather@nottingham.ac.uk | lld:pubmed |
pubmed-article:19572403 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:19572403 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |
pubmed-article:19572403 | pubmed:publicationType | Evaluation Studies | lld:pubmed |