pubmed-article:19472630 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:19472630 | lifeskim:mentions | umls-concept:C0034603 | lld:lifeskim |
pubmed-article:19472630 | lifeskim:mentions | umls-concept:C0456603 | lld:lifeskim |
pubmed-article:19472630 | lifeskim:mentions | umls-concept:C0032863 | lld:lifeskim |
pubmed-article:19472630 | lifeskim:mentions | umls-concept:C0679083 | lld:lifeskim |
pubmed-article:19472630 | lifeskim:mentions | umls-concept:C0596255 | lld:lifeskim |
pubmed-article:19472630 | pubmed:issue | 4 | lld:pubmed |
pubmed-article:19472630 | pubmed:dateCreated | 2009-5-28 | lld:pubmed |
pubmed-article:19472630 | pubmed:abstractText | Many papers discussed the I value for water given by the ICRU, concluding that a value of about 80 +/- 2 eV instead of 67.2 eV would reproduce measured ion depth-dose curves. A change in the I value for water would have an effect on the stopping power and, hence, on the water-to-air stopping power ratio, which is important in clinical dosimetry of proton and ion beams. For energies ranging from 50 to 330 MeV/u and for one spread out Bragg peak, the authors compare the impact of the I value on the water-to-air stopping power ratio. The authors calculate ratios from different ICRU stopping power tables and ICRU reports. The stopping power ratio is calculated via track-length dose calculation with SHIELD-HIT07. In the calculations, the stopping power ratio is reduced to a value of 1.119 in the plateau region as compared to the cited value of 1.13 in IAEA TRS-398. At low energies the stopping power ratio increases by up to 6% in the last few tenths of a mm toward the Bragg peak. For a spread out Bragg peak of 13.5 mm width at 130 mm depth, the stopping power ratio increases by about 1% toward the distal end. | lld:pubmed |
pubmed-article:19472630 | pubmed:language | eng | lld:pubmed |
pubmed-article:19472630 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:19472630 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:19472630 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:19472630 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:19472630 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:19472630 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:19472630 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:19472630 | pubmed:month | Apr | lld:pubmed |
pubmed-article:19472630 | pubmed:issn | 0094-2405 | lld:pubmed |
pubmed-article:19472630 | pubmed:author | pubmed-author:JäkelOliverO | lld:pubmed |
pubmed-article:19472630 | pubmed:author | pubmed-author:SobolevskyNik... | lld:pubmed |
pubmed-article:19472630 | pubmed:author | pubmed-author:BasslerNielsN | lld:pubmed |
pubmed-article:19472630 | pubmed:author | pubmed-author:HenknerKatrin... | lld:pubmed |
pubmed-article:19472630 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:19472630 | pubmed:volume | 36 | lld:pubmed |
pubmed-article:19472630 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:19472630 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:19472630 | pubmed:pagination | 1230-5 | lld:pubmed |
pubmed-article:19472630 | pubmed:meshHeading | pubmed-meshheading:19472630... | lld:pubmed |
pubmed-article:19472630 | pubmed:meshHeading | pubmed-meshheading:19472630... | lld:pubmed |
pubmed-article:19472630 | pubmed:meshHeading | pubmed-meshheading:19472630... | lld:pubmed |
pubmed-article:19472630 | pubmed:meshHeading | pubmed-meshheading:19472630... | lld:pubmed |
pubmed-article:19472630 | pubmed:meshHeading | pubmed-meshheading:19472630... | lld:pubmed |
pubmed-article:19472630 | pubmed:meshHeading | pubmed-meshheading:19472630... | lld:pubmed |
pubmed-article:19472630 | pubmed:meshHeading | pubmed-meshheading:19472630... | lld:pubmed |
pubmed-article:19472630 | pubmed:meshHeading | pubmed-meshheading:19472630... | lld:pubmed |
pubmed-article:19472630 | pubmed:meshHeading | pubmed-meshheading:19472630... | lld:pubmed |
pubmed-article:19472630 | pubmed:meshHeading | pubmed-meshheading:19472630... | lld:pubmed |
pubmed-article:19472630 | pubmed:meshHeading | pubmed-meshheading:19472630... | lld:pubmed |
pubmed-article:19472630 | pubmed:meshHeading | pubmed-meshheading:19472630... | lld:pubmed |
pubmed-article:19472630 | pubmed:meshHeading | pubmed-meshheading:19472630... | lld:pubmed |
pubmed-article:19472630 | pubmed:meshHeading | pubmed-meshheading:19472630... | lld:pubmed |
pubmed-article:19472630 | pubmed:year | 2009 | lld:pubmed |
pubmed-article:19472630 | pubmed:articleTitle | Monte Carlo simulations on the water-to-air stopping power ratio for carbon ion dosimetry. | lld:pubmed |
pubmed-article:19472630 | pubmed:affiliation | Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany. k.henkner@dkfz.de | lld:pubmed |
pubmed-article:19472630 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:19472630 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |