Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:19183596rdf:typepubmed:Citationlld:pubmed
pubmed-article:19183596lifeskim:mentionsumls-concept:C0029144lld:lifeskim
pubmed-article:19183596lifeskim:mentionsumls-concept:C1444754lld:lifeskim
pubmed-article:19183596lifeskim:mentionsumls-concept:C1705483lld:lifeskim
pubmed-article:19183596lifeskim:mentionsumls-concept:C2355578lld:lifeskim
pubmed-article:19183596lifeskim:mentionsumls-concept:C1709329lld:lifeskim
pubmed-article:19183596pubmed:issue4lld:pubmed
pubmed-article:19183596pubmed:dateCreated2009-2-2lld:pubmed
pubmed-article:19183596pubmed:abstractTextWe present a simple technique to actively stabilize the optical path length in an optical fiber. A part of the fiber is coated with a thin, electrically conductive layer, which acts as a heater. The optical path length is thus modified by temperature-dependent changes in the refractive index and the mechanical length of the fiber. For the first time, we measure the dynamic response of the optical path length to the periodic changes of temperature and find it to be in agreement with our former theoretical prediction. The fiber's response to the temperature changes is determined by the speed of sound in quartz rather than by slow thermal diffusion. Making use of this fact, we succeeded in actively stabilizing the optical path length with a closed-loop bandwidth of 3.8 kHz.lld:pubmed
pubmed-article:19183596pubmed:languageenglld:pubmed
pubmed-article:19183596pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19183596pubmed:citationSubsetIMlld:pubmed
pubmed-article:19183596pubmed:statusMEDLINElld:pubmed
pubmed-article:19183596pubmed:monthFeblld:pubmed
pubmed-article:19183596pubmed:issn1539-4522lld:pubmed
pubmed-article:19183596pubmed:authorpubmed-author:PetersAchimAlld:pubmed
pubmed-article:19183596pubmed:authorpubmed-author:MüllerHolgerHlld:pubmed
pubmed-article:19183596pubmed:authorpubmed-author:MurgiaMauroMlld:pubmed
pubmed-article:19183596pubmed:authorpubmed-author:SchiemangkMax...lld:pubmed
pubmed-article:19183596pubmed:issnTypeElectroniclld:pubmed
pubmed-article:19183596pubmed:day1lld:pubmed
pubmed-article:19183596pubmed:volume48lld:pubmed
pubmed-article:19183596pubmed:ownerNLMlld:pubmed
pubmed-article:19183596pubmed:authorsCompleteYlld:pubmed
pubmed-article:19183596pubmed:pagination704-7lld:pubmed
pubmed-article:19183596pubmed:meshHeadingpubmed-meshheading:19183596...lld:pubmed
pubmed-article:19183596pubmed:meshHeadingpubmed-meshheading:19183596...lld:pubmed
pubmed-article:19183596pubmed:meshHeadingpubmed-meshheading:19183596...lld:pubmed
pubmed-article:19183596pubmed:meshHeadingpubmed-meshheading:19183596...lld:pubmed
pubmed-article:19183596pubmed:meshHeadingpubmed-meshheading:19183596...lld:pubmed
pubmed-article:19183596pubmed:meshHeadingpubmed-meshheading:19183596...lld:pubmed
pubmed-article:19183596pubmed:meshHeadingpubmed-meshheading:19183596...lld:pubmed
pubmed-article:19183596pubmed:year2009lld:pubmed
pubmed-article:19183596pubmed:articleTitleThermoacoustic optical path length stabilization in a single-mode optical fiber.lld:pubmed
pubmed-article:19183596pubmed:affiliationInstitute of Physics, Humboldt University of Berlin, Hausvogteiplatz 5-7, 10117 Berlin, Germany. lewoczko@physik.hu-berlin.delld:pubmed
pubmed-article:19183596pubmed:publicationTypeJournal Articlelld:pubmed