Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:18988248rdf:typepubmed:Citationlld:pubmed
pubmed-article:18988248lifeskim:mentionsumls-concept:C0025663lld:lifeskim
pubmed-article:18988248lifeskim:mentionsumls-concept:C0231472lld:lifeskim
pubmed-article:18988248lifeskim:mentionsumls-concept:C0205217lld:lifeskim
pubmed-article:18988248lifeskim:mentionsumls-concept:C1704332lld:lifeskim
pubmed-article:18988248lifeskim:mentionsumls-concept:C1996904lld:lifeskim
pubmed-article:18988248lifeskim:mentionsumls-concept:C1880497lld:lifeskim
pubmed-article:18988248lifeskim:mentionsumls-concept:C0205132lld:lifeskim
pubmed-article:18988248pubmed:issue8lld:pubmed
pubmed-article:18988248pubmed:dateCreated2009-4-7lld:pubmed
pubmed-article:18988248pubmed:abstractTextWe have developed a Scalable Linear Augmented Slater-Type Orbital (LASTO) method for electronic-structure calculations on free-standing atomic clusters. As with other linear methods we solve the Schrödinger equation using a mixed basis set consisting of numerical functions inside atom-centered spheres and matched onto tail functions outside. The tail functions are Slater-type orbitals, which are localized, exponentially decaying functions. To solve the Poisson equation between spheres, we use a finite difference method replacing the rapidly varying charge density inside the spheres with a smoothed density with the same multipole moments. We use multigrid techniques on the mesh, which yields the Coulomb potential on the spheres and in turn defines the potential inside via a Dirichlet problem. To solve the linear eigen-problem, we use ScaLAPACK, a well-developed package to solve large eigensystems with dense matrices. We have tested the method on small clusters of palladium.lld:pubmed
pubmed-article:18988248pubmed:languageenglld:pubmed
pubmed-article:18988248pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:18988248pubmed:citationSubsetIMlld:pubmed
pubmed-article:18988248pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:18988248pubmed:statusMEDLINElld:pubmed
pubmed-article:18988248pubmed:monthJunlld:pubmed
pubmed-article:18988248pubmed:issn1096-987Xlld:pubmed
pubmed-article:18988248pubmed:authorpubmed-author:DavenportJ...lld:pubmed
pubmed-article:18988248pubmed:authorpubmed-author:McGuiganMMlld:pubmed
pubmed-article:18988248pubmed:authorpubmed-author:KerleJ KJKlld:pubmed
pubmed-article:18988248pubmed:authorpubmed-author:KangK SKSlld:pubmed
pubmed-article:18988248pubmed:authorpubmed-author:GlimmJJlld:pubmed
pubmed-article:18988248pubmed:copyrightInfo2008 Wiley Periodicals, Inc.lld:pubmed
pubmed-article:18988248pubmed:issnTypeElectroniclld:pubmed
pubmed-article:18988248pubmed:volume30lld:pubmed
pubmed-article:18988248pubmed:ownerNLMlld:pubmed
pubmed-article:18988248pubmed:authorsCompleteYlld:pubmed
pubmed-article:18988248pubmed:pagination1185-93lld:pubmed
pubmed-article:18988248pubmed:meshHeadingpubmed-meshheading:18988248...lld:pubmed
pubmed-article:18988248pubmed:meshHeadingpubmed-meshheading:18988248...lld:pubmed
pubmed-article:18988248pubmed:meshHeadingpubmed-meshheading:18988248...lld:pubmed
pubmed-article:18988248pubmed:year2009lld:pubmed
pubmed-article:18988248pubmed:articleTitleLinear augmented Slater-type orbital method for free standing clusters.lld:pubmed
pubmed-article:18988248pubmed:affiliationComputational Science Center, Brookhaven National Laboratory, Upton, New York, USA.lld:pubmed
pubmed-article:18988248pubmed:publicationTypeJournal Articlelld:pubmed