Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:18837547rdf:typepubmed:Citationlld:pubmed
pubmed-article:18837547lifeskim:mentionsumls-concept:C0023870lld:lifeskim
pubmed-article:18837547lifeskim:mentionsumls-concept:C0220781lld:lifeskim
pubmed-article:18837547lifeskim:mentionsumls-concept:C1883254lld:lifeskim
pubmed-article:18837547lifeskim:mentionsumls-concept:C1698986lld:lifeskim
pubmed-article:18837547lifeskim:mentionsumls-concept:C2930587lld:lifeskim
pubmed-article:18837547lifeskim:mentionsumls-concept:C2349975lld:lifeskim
pubmed-article:18837547lifeskim:mentionsumls-concept:C0871161lld:lifeskim
pubmed-article:18837547pubmed:issue21lld:pubmed
pubmed-article:18837547pubmed:dateCreated2008-10-28lld:pubmed
pubmed-article:18837547pubmed:abstractTextSingle crystalline TiO2-B nanoribbons with high-density nanocavities were successfully synthesized via a simple hydrothermal route. The as-prepared TiO2-B nanoribbons exhibited a large Brunauer, Emmett, and Teller (BET) surface area of about 305 m(2)/g because of the high-density nanocavities inside the thin nanoribbons. Electrochemical measurements indicated that the TiO2-B nanoribbons with dense nanocavities showed discharge specific capacity higher than those of TiO2-B nanotubes and nanowires. It was found that the dense nanocavities have an important influence on the electrochemical lithium intercalation properties.lld:pubmed
pubmed-article:18837547pubmed:languageenglld:pubmed
pubmed-article:18837547pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:18837547pubmed:statusPubMed-not-MEDLINElld:pubmed
pubmed-article:18837547pubmed:monthNovlld:pubmed
pubmed-article:18837547pubmed:issn1520-510Xlld:pubmed
pubmed-article:18837547pubmed:authorpubmed-author:RenZ BZBlld:pubmed
pubmed-article:18837547pubmed:authorpubmed-author:LiMingMlld:pubmed
pubmed-article:18837547pubmed:authorpubmed-author:WangLinLlld:pubmed
pubmed-article:18837547pubmed:authorpubmed-author:ZouBoBlld:pubmed
pubmed-article:18837547pubmed:authorpubmed-author:LiXianglinXlld:pubmed
pubmed-article:18837547pubmed:authorpubmed-author:ZhangJingweiJlld:pubmed
pubmed-article:18837547pubmed:authorpubmed-author:LiuBingbingBlld:pubmed
pubmed-article:18837547pubmed:authorpubmed-author:ZouGuangtianGlld:pubmed
pubmed-article:18837547pubmed:authorpubmed-author:CuiTianTlld:pubmed
pubmed-article:18837547pubmed:authorpubmed-author:ZouYonggangYlld:pubmed
pubmed-article:18837547pubmed:authorpubmed-author:LiQuanjunQlld:pubmed
pubmed-article:18837547pubmed:authorpubmed-author:MaHongleiHlld:pubmed
pubmed-article:18837547pubmed:authorpubmed-author:YuShidanSlld:pubmed
pubmed-article:18837547pubmed:authorpubmed-author:LiZepengZlld:pubmed
pubmed-article:18837547pubmed:issnTypeElectroniclld:pubmed
pubmed-article:18837547pubmed:day3lld:pubmed
pubmed-article:18837547pubmed:volume47lld:pubmed
pubmed-article:18837547pubmed:ownerNLMlld:pubmed
pubmed-article:18837547pubmed:authorsCompleteYlld:pubmed
pubmed-article:18837547pubmed:pagination9870-3lld:pubmed
pubmed-article:18837547pubmed:year2008lld:pubmed
pubmed-article:18837547pubmed:articleTitleSynthesis of high-density nanocavities inside TiO2-B nanoribbons and their enhanced electrochemical lithium storage properties.lld:pubmed
pubmed-article:18837547pubmed:affiliationState Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, PR China.lld:pubmed
pubmed-article:18837547pubmed:publicationTypeJournal Articlelld:pubmed