pubmed-article:18560832 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:18560832 | lifeskim:mentions | umls-concept:C0004611 | lld:lifeskim |
pubmed-article:18560832 | lifeskim:mentions | umls-concept:C0017431 | lld:lifeskim |
pubmed-article:18560832 | lifeskim:mentions | umls-concept:C0022773 | lld:lifeskim |
pubmed-article:18560832 | lifeskim:mentions | umls-concept:C1880022 | lld:lifeskim |
pubmed-article:18560832 | pubmed:issue | 1 | lld:pubmed |
pubmed-article:18560832 | pubmed:dateCreated | 2008-7-9 | lld:pubmed |
pubmed-article:18560832 | pubmed:abstractText | The isolates were identified on the basis of ars genotype characteristics as well as arsenic oxidation/reduction analysis based on the molecular detection characterization. Diversity, pH range (4.0 to 7.0), location, and ars features were assessed for four arsenic-contaminated pond sites and six arsenic tailings located in the Duck-um mine and Myoung-bong mine areas. The presence of ars genes in the genomes of each bacterial strain was evaluated using polymerase chain reaction. Batch experiment results showed that Pseudomonas putida strains OS-3 and -18 completely oxidized 1 mM of arsenite(III) to arsenate(V) within 35-40 h. In contrast, two arsenate-reducing bacteria isolated from mines, P. putida RS-4 and RS-5, were capable of growing aerobically in growth medium supplemented with up to 66.7 mM arsenate(V), which are significantly higher concentration than those tolerated by other arsenic-resistant bacteria. These results suggest that newly isolated indigenous arsenic-resistant bacteria may provide a better understanding of the molecular geomicrobiology and may be applied to the bioremediation of arsenic-contaminated mines in Korea. Ecologically, the redox potential plays an important role in arsenic toxicity and mobility in As-contaminated mine areas, as it facilitates the biogeochemical cycling activity of Pseudomonas sp. groups. | lld:pubmed |
pubmed-article:18560832 | pubmed:language | eng | lld:pubmed |
pubmed-article:18560832 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:18560832 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:18560832 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:18560832 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:18560832 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:18560832 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:18560832 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:18560832 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:18560832 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:18560832 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:18560832 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:18560832 | pubmed:month | Aug | lld:pubmed |
pubmed-article:18560832 | pubmed:issn | 0175-7598 | lld:pubmed |
pubmed-article:18560832 | pubmed:author | pubmed-author:KimYang-HoonY... | lld:pubmed |
pubmed-article:18560832 | pubmed:author | pubmed-author:KimKyoung-Woo... | lld:pubmed |
pubmed-article:18560832 | pubmed:author | pubmed-author:ChangJin-SooJ... | lld:pubmed |
pubmed-article:18560832 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:18560832 | pubmed:volume | 80 | lld:pubmed |
pubmed-article:18560832 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:18560832 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:18560832 | pubmed:pagination | 155-65 | lld:pubmed |
pubmed-article:18560832 | pubmed:meshHeading | pubmed-meshheading:18560832... | lld:pubmed |
pubmed-article:18560832 | pubmed:meshHeading | pubmed-meshheading:18560832... | lld:pubmed |
pubmed-article:18560832 | pubmed:meshHeading | pubmed-meshheading:18560832... | lld:pubmed |
pubmed-article:18560832 | pubmed:meshHeading | pubmed-meshheading:18560832... | lld:pubmed |
pubmed-article:18560832 | pubmed:meshHeading | pubmed-meshheading:18560832... | lld:pubmed |
pubmed-article:18560832 | pubmed:meshHeading | pubmed-meshheading:18560832... | lld:pubmed |
pubmed-article:18560832 | pubmed:meshHeading | pubmed-meshheading:18560832... | lld:pubmed |
pubmed-article:18560832 | pubmed:meshHeading | pubmed-meshheading:18560832... | lld:pubmed |
pubmed-article:18560832 | pubmed:meshHeading | pubmed-meshheading:18560832... | lld:pubmed |
pubmed-article:18560832 | pubmed:meshHeading | pubmed-meshheading:18560832... | lld:pubmed |
pubmed-article:18560832 | pubmed:meshHeading | pubmed-meshheading:18560832... | lld:pubmed |
pubmed-article:18560832 | pubmed:meshHeading | pubmed-meshheading:18560832... | lld:pubmed |
pubmed-article:18560832 | pubmed:meshHeading | pubmed-meshheading:18560832... | lld:pubmed |
pubmed-article:18560832 | pubmed:meshHeading | pubmed-meshheading:18560832... | lld:pubmed |
pubmed-article:18560832 | pubmed:meshHeading | pubmed-meshheading:18560832... | lld:pubmed |
pubmed-article:18560832 | pubmed:meshHeading | pubmed-meshheading:18560832... | lld:pubmed |
pubmed-article:18560832 | pubmed:year | 2008 | lld:pubmed |
pubmed-article:18560832 | pubmed:articleTitle | The ars genotype characterization of arsenic-resistant bacteria from arsenic-contaminated gold-silver mines in the Republic of Korea. | lld:pubmed |
pubmed-article:18560832 | pubmed:affiliation | Arsenic Geoenvironment Laboratory, Department of Environment Science and Engineering, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Buk-gu, Gwangju, South Korea. | lld:pubmed |
pubmed-article:18560832 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:18560832 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |