Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:18035901rdf:typepubmed:Citationlld:pubmed
pubmed-article:18035901lifeskim:mentionsumls-concept:C0013846lld:lifeskim
pubmed-article:18035901lifeskim:mentionsumls-concept:C0205245lld:lifeskim
pubmed-article:18035901lifeskim:mentionsumls-concept:C0542341lld:lifeskim
pubmed-article:18035901lifeskim:mentionsumls-concept:C1521991lld:lifeskim
pubmed-article:18035901lifeskim:mentionsumls-concept:C0178587lld:lifeskim
pubmed-article:18035901lifeskim:mentionsumls-concept:C0699733lld:lifeskim
pubmed-article:18035901lifeskim:mentionsumls-concept:C0332583lld:lifeskim
pubmed-article:18035901lifeskim:mentionsumls-concept:C0013812lld:lifeskim
pubmed-article:18035901lifeskim:mentionsumls-concept:C0205195lld:lifeskim
pubmed-article:18035901lifeskim:mentionsumls-concept:C0449445lld:lifeskim
pubmed-article:18035901lifeskim:mentionsumls-concept:C0871935lld:lifeskim
pubmed-article:18035901lifeskim:mentionsumls-concept:C0871161lld:lifeskim
pubmed-article:18035901pubmed:issue19lld:pubmed
pubmed-article:18035901pubmed:dateCreated2007-11-26lld:pubmed
pubmed-article:18035901pubmed:abstractTextAn efficient self-consistent approach combining the nonequilibrium Green's function formalism with density functional theory is developed to calculate electron transport properties of molecular devices with quasi-one-dimensional (1D) electrodes. Two problems associated with the low dimensionality of the 1D electrodes, i.e., the nonequilibrium state and the uncertain boundary conditions for the electrostatic potential, are circumvented by introducing the reflectionless boundary conditions at the electrode-contact interfaces and the zero electric field boundary conditions at the electrode-molecule interfaces. Three prototypical systems, respectively, an ideal ballistic conductor, a high resistance tunnel junction, and a molecular device, are investigated to illustrate the accuracy and efficiency of our approach.lld:pubmed
pubmed-article:18035901pubmed:languageenglld:pubmed
pubmed-article:18035901pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:18035901pubmed:statusPubMed-not-MEDLINElld:pubmed
pubmed-article:18035901pubmed:monthNovlld:pubmed
pubmed-article:18035901pubmed:issn0021-9606lld:pubmed
pubmed-article:18035901pubmed:authorpubmed-author:LiRuiRlld:pubmed
pubmed-article:18035901pubmed:authorpubmed-author:HouShiminSlld:pubmed
pubmed-article:18035901pubmed:authorpubmed-author:XueZengquanZlld:pubmed
pubmed-article:18035901pubmed:authorpubmed-author:SanvitoStefan...lld:pubmed
pubmed-article:18035901pubmed:authorpubmed-author:QianZekanZlld:pubmed
pubmed-article:18035901pubmed:issnTypePrintlld:pubmed
pubmed-article:18035901pubmed:day21lld:pubmed
pubmed-article:18035901pubmed:volume127lld:pubmed
pubmed-article:18035901pubmed:ownerNLMlld:pubmed
pubmed-article:18035901pubmed:authorsCompleteYlld:pubmed
pubmed-article:18035901pubmed:pagination194710lld:pubmed
pubmed-article:18035901pubmed:year2007lld:pubmed
pubmed-article:18035901pubmed:articleTitleAn efficient nonequilibrium Green's function formalism combined with density functional theory approach for calculating electron transport properties of molecular devices with quasi-one-dimensional electrodes.lld:pubmed
pubmed-article:18035901pubmed:affiliationKey Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China.lld:pubmed
pubmed-article:18035901pubmed:publicationTypeJournal Articlelld:pubmed