Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:17917129rdf:typepubmed:Citationlld:pubmed
pubmed-article:17917129lifeskim:mentionsumls-concept:C0205245lld:lifeskim
pubmed-article:17917129lifeskim:mentionsumls-concept:C0332140lld:lifeskim
pubmed-article:17917129lifeskim:mentionsumls-concept:C1511726lld:lifeskim
pubmed-article:17917129lifeskim:mentionsumls-concept:C0008902lld:lifeskim
pubmed-article:17917129lifeskim:mentionsumls-concept:C1705938lld:lifeskim
pubmed-article:17917129lifeskim:mentionsumls-concept:C1527178lld:lifeskim
pubmed-article:17917129pubmed:issue3lld:pubmed
pubmed-article:17917129pubmed:dateCreated2007-10-5lld:pubmed
pubmed-article:17917129pubmed:abstractTextWe describe a method for classifying subjects based on functional magnetic-resonance (fMR) data, using a method combining a Bayesian-network classifier with inverse-tree structure (BNCIT), and ensemble learning. The central challenge is to generate a classifier from a small sample of high-dimensional data. The principal strengths of our method include the nonparametric multivariate Bayesian-network representation, and joint performance of feature selection and classification. Preliminary results indicate that this method can detect regions characterizing group differences, and can, on the basis of activation levels in these regions, accurately classify new subjects.lld:pubmed
pubmed-article:17917129pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17917129pubmed:languageenglld:pubmed
pubmed-article:17917129pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17917129pubmed:citationSubsetIMlld:pubmed
pubmed-article:17917129pubmed:statusMEDLINElld:pubmed
pubmed-article:17917129pubmed:issn1539-2791lld:pubmed
pubmed-article:17917129pubmed:authorpubmed-author:ChenRongRlld:pubmed
pubmed-article:17917129pubmed:authorpubmed-author:HerskovitsEdw...lld:pubmed
pubmed-article:17917129pubmed:issnTypePrintlld:pubmed
pubmed-article:17917129pubmed:volume5lld:pubmed
pubmed-article:17917129pubmed:ownerNLMlld:pubmed
pubmed-article:17917129pubmed:authorsCompleteYlld:pubmed
pubmed-article:17917129pubmed:pagination178-88lld:pubmed
pubmed-article:17917129pubmed:meshHeadingpubmed-meshheading:17917129...lld:pubmed
pubmed-article:17917129pubmed:meshHeadingpubmed-meshheading:17917129...lld:pubmed
pubmed-article:17917129pubmed:meshHeadingpubmed-meshheading:17917129...lld:pubmed
pubmed-article:17917129pubmed:meshHeadingpubmed-meshheading:17917129...lld:pubmed
pubmed-article:17917129pubmed:meshHeadingpubmed-meshheading:17917129...lld:pubmed
pubmed-article:17917129pubmed:meshHeadingpubmed-meshheading:17917129...lld:pubmed
pubmed-article:17917129pubmed:meshHeadingpubmed-meshheading:17917129...lld:pubmed
pubmed-article:17917129pubmed:meshHeadingpubmed-meshheading:17917129...lld:pubmed
pubmed-article:17917129pubmed:year2007lld:pubmed
pubmed-article:17917129pubmed:articleTitleClinical diagnosis based on bayesian classification of functional magnetic-resonance data.lld:pubmed
pubmed-article:17917129pubmed:affiliationDepartment of Radiology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, USA. rong.chen@uphs.upenn.edulld:pubmed
pubmed-article:17917129pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:17917129pubmed:publicationTypeResearch Support, N.I.H., Extramurallld:pubmed