pubmed-article:17680832 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:17680832 | lifeskim:mentions | umls-concept:C0011900 | lld:lifeskim |
pubmed-article:17680832 | lifeskim:mentions | umls-concept:C0277793 | lld:lifeskim |
pubmed-article:17680832 | lifeskim:mentions | umls-concept:C1511726 | lld:lifeskim |
pubmed-article:17680832 | lifeskim:mentions | umls-concept:C1704711 | lld:lifeskim |
pubmed-article:17680832 | lifeskim:mentions | umls-concept:C0034980 | lld:lifeskim |
pubmed-article:17680832 | pubmed:issue | 1 | lld:pubmed |
pubmed-article:17680832 | pubmed:dateCreated | 2008-2-28 | lld:pubmed |
pubmed-article:17680832 | pubmed:abstractText | We consider methods for estimating the effect of a covariate on a disease onset distribution when the observed data structure consists of right-censored data on diagnosis times and current status data on onset times amongst individuals who have not yet been diagnosed. Dunson and Baird (2001, Biometrics 57, 306-403) approached this problem using maximum likelihood, under the assumption that the ratio of the diagnosis and onset distributions is monotonic nondecreasing. As an alternative, we propose a two-step estimator, an extension of the approach of van der Laan, Jewell, and Petersen (1997, Biometrika 84, 539-554) in the single sample setting, which is computationally much simpler and requires no assumptions on this ratio. A simulation study is performed comparing estimates obtained from these two approaches, as well as that from a standard current status analysis that ignores diagnosis data. Results indicate that the Dunson and Baird estimator outperforms the two-step estimator when the monotonicity assumption holds, but the reverse is true when the assumption fails. The simple current status estimator loses only a small amount of precision in comparison to the two-step procedure but requires monitoring time information for all individuals. In the data that motivated this work, a study of uterine fibroids and chemical exposure to dioxin, the monotonicity assumption is seen to fail. Here, the two-step and current status estimators both show no significant association between the level of dioxin exposure and the hazard for onset of uterine fibroids; the two-step estimator of the relative hazard associated with increasing levels of exposure has the least estimated variance amongst the three estimators considered. | lld:pubmed |
pubmed-article:17680832 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17680832 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17680832 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17680832 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17680832 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17680832 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17680832 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17680832 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17680832 | pubmed:language | eng | lld:pubmed |
pubmed-article:17680832 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17680832 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:17680832 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17680832 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:17680832 | pubmed:month | Mar | lld:pubmed |
pubmed-article:17680832 | pubmed:issn | 0006-341X | lld:pubmed |
pubmed-article:17680832 | pubmed:author | pubmed-author:SamuelsSteven... | lld:pubmed |
pubmed-article:17680832 | pubmed:author | pubmed-author:JewellNichola... | lld:pubmed |
pubmed-article:17680832 | pubmed:author | pubmed-author:YoungJessica... | lld:pubmed |
pubmed-article:17680832 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:17680832 | pubmed:volume | 64 | lld:pubmed |
pubmed-article:17680832 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:17680832 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:17680832 | pubmed:pagination | 20-8 | lld:pubmed |
pubmed-article:17680832 | pubmed:dateRevised | 2011-9-26 | lld:pubmed |
pubmed-article:17680832 | pubmed:meshHeading | pubmed-meshheading:17680832... | lld:pubmed |
pubmed-article:17680832 | pubmed:meshHeading | pubmed-meshheading:17680832... | lld:pubmed |
pubmed-article:17680832 | pubmed:meshHeading | pubmed-meshheading:17680832... | lld:pubmed |
pubmed-article:17680832 | pubmed:meshHeading | pubmed-meshheading:17680832... | lld:pubmed |
pubmed-article:17680832 | pubmed:meshHeading | pubmed-meshheading:17680832... | lld:pubmed |
pubmed-article:17680832 | pubmed:meshHeading | pubmed-meshheading:17680832... | lld:pubmed |
pubmed-article:17680832 | pubmed:meshHeading | pubmed-meshheading:17680832... | lld:pubmed |
pubmed-article:17680832 | pubmed:meshHeading | pubmed-meshheading:17680832... | lld:pubmed |
pubmed-article:17680832 | pubmed:meshHeading | pubmed-meshheading:17680832... | lld:pubmed |
pubmed-article:17680832 | pubmed:meshHeading | pubmed-meshheading:17680832... | lld:pubmed |
pubmed-article:17680832 | pubmed:meshHeading | pubmed-meshheading:17680832... | lld:pubmed |
pubmed-article:17680832 | pubmed:meshHeading | pubmed-meshheading:17680832... | lld:pubmed |
pubmed-article:17680832 | pubmed:meshHeading | pubmed-meshheading:17680832... | lld:pubmed |
pubmed-article:17680832 | pubmed:year | 2008 | lld:pubmed |
pubmed-article:17680832 | pubmed:articleTitle | Regression analysis of a disease onset distribution using diagnosis data. | lld:pubmed |
pubmed-article:17680832 | pubmed:affiliation | Division of Biostatistics, School of Public Health, 140 Warren Hall 7360, University of California, Berkeley, CA 94720, USA. jgerald@berkeley.edu | lld:pubmed |
pubmed-article:17680832 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:17680832 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |