Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:17511638rdf:typepubmed:Citationlld:pubmed
pubmed-article:17511638lifeskim:mentionsumls-concept:C0038435lld:lifeskim
pubmed-article:17511638lifeskim:mentionsumls-concept:C0596901lld:lifeskim
pubmed-article:17511638lifeskim:mentionsumls-concept:C0308269lld:lifeskim
pubmed-article:17511638pubmed:issuePt 3lld:pubmed
pubmed-article:17511638pubmed:dateCreated2007-5-21lld:pubmed
pubmed-article:17511638pubmed:abstractTextThe nature of the bilayer motif coupled with the ability of lipids and proteins to diffuse freely through this structure is crucial to the viability of cells and their ability to compartmentalize domains contained therein. It seems surprising to find then that biological as well as model membranes exist in a dynamic state of mechanical stress. The stresses within such membranes are surprisingly large, typically reaching up to 50 atm (1 atm=101.325 kPa) at the core of the membrane and vary as a function of depth. The uneven distribution of lateral pressures within monolayer leaflets causes them to bend away from or towards the water interface. This can result in the formation of complex, self-assembled mesophases, many of which occur in vivo. Our knowledge of the principles underlying membrane mechanics has reached the point where we are now able to manipulate them and create nano-structures with reasonable predictability. In addition, they can be used both to explain and control the partitioning of amphipathic proteins on to membranes. The dependence of the dynamics of membrane-bound proteins and the chemical reactivity of amphipathic drug molecules on membrane stresses suggests that Nature itself takes advantage of this. Understanding and manipulating these internal forces will be a key element in creating self-assembled, biocompatible, nanoscale cell-like systems.lld:pubmed
pubmed-article:17511638pubmed:languageenglld:pubmed
pubmed-article:17511638pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17511638pubmed:citationSubsetIMlld:pubmed
pubmed-article:17511638pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17511638pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17511638pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17511638pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17511638pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17511638pubmed:statusMEDLINElld:pubmed
pubmed-article:17511638pubmed:monthJunlld:pubmed
pubmed-article:17511638pubmed:issn0300-5127lld:pubmed
pubmed-article:17511638pubmed:authorpubmed-author:JackowskiSSlld:pubmed
pubmed-article:17511638pubmed:authorpubmed-author:WUK MKMlld:pubmed
pubmed-article:17511638pubmed:authorpubmed-author:ClarkeJ AJAlld:pubmed
pubmed-article:17511638pubmed:authorpubmed-author:ParkerC ACAlld:pubmed
pubmed-article:17511638pubmed:authorpubmed-author:FayD PDPlld:pubmed
pubmed-article:17511638pubmed:authorpubmed-author:BaciuMMlld:pubmed
pubmed-article:17511638pubmed:authorpubmed-author:HuntA NANlld:pubmed
pubmed-article:17511638pubmed:authorpubmed-author:CenRRlld:pubmed
pubmed-article:17511638pubmed:authorpubmed-author:PlissonCClld:pubmed
pubmed-article:17511638pubmed:authorpubmed-author:AttardG SGSlld:pubmed
pubmed-article:17511638pubmed:authorpubmed-author:TemplerR HRHlld:pubmed
pubmed-article:17511638pubmed:authorpubmed-author:MuleySSlld:pubmed
pubmed-article:17511638pubmed:authorpubmed-author:ShearmanG CGClld:pubmed
pubmed-article:17511638pubmed:authorpubmed-author:SebaiS CSClld:pubmed
pubmed-article:17511638pubmed:issnTypePrintlld:pubmed
pubmed-article:17511638pubmed:volume35lld:pubmed
pubmed-article:17511638pubmed:ownerNLMlld:pubmed
pubmed-article:17511638pubmed:authorsCompleteYlld:pubmed
pubmed-article:17511638pubmed:pagination498-501lld:pubmed
pubmed-article:17511638pubmed:meshHeadingpubmed-meshheading:17511638...lld:pubmed
pubmed-article:17511638pubmed:meshHeadingpubmed-meshheading:17511638...lld:pubmed
pubmed-article:17511638pubmed:meshHeadingpubmed-meshheading:17511638...lld:pubmed
pubmed-article:17511638pubmed:meshHeadingpubmed-meshheading:17511638...lld:pubmed
pubmed-article:17511638pubmed:meshHeadingpubmed-meshheading:17511638...lld:pubmed
pubmed-article:17511638pubmed:meshHeadingpubmed-meshheading:17511638...lld:pubmed
pubmed-article:17511638pubmed:meshHeadingpubmed-meshheading:17511638...lld:pubmed
pubmed-article:17511638pubmed:meshHeadingpubmed-meshheading:17511638...lld:pubmed
pubmed-article:17511638pubmed:meshHeadingpubmed-meshheading:17511638...lld:pubmed
pubmed-article:17511638pubmed:meshHeadingpubmed-meshheading:17511638...lld:pubmed
pubmed-article:17511638pubmed:year2007lld:pubmed
pubmed-article:17511638pubmed:articleTitleUsing membrane stress to our advantage.lld:pubmed
pubmed-article:17511638pubmed:affiliationChemical Biology Centre, Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, UK.lld:pubmed
pubmed-article:17511638pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:17511638pubmed:publicationTypeReviewlld:pubmed
pubmed-article:17511638pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed