Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:17354855rdf:typepubmed:Citationlld:pubmed
pubmed-article:17354855lifeskim:mentionsumls-concept:C1521747lld:lifeskim
pubmed-article:17354855lifeskim:mentionsumls-concept:C0008902lld:lifeskim
pubmed-article:17354855lifeskim:mentionsumls-concept:C1707455lld:lifeskim
pubmed-article:17354855lifeskim:mentionsumls-concept:C0449851lld:lifeskim
pubmed-article:17354855pubmed:issuePt 2lld:pubmed
pubmed-article:17354855pubmed:dateCreated2007-3-14lld:pubmed
pubmed-article:17354855pubmed:abstractTextIt is widely accepted in the medical community that breast tissue density is an important risk factor for the development of breast cancer. Thus, the development of reliable automatic methods for classification of breast tissue is justified and necessary. Although different approaches in this area have been proposed in recent years, only a few are based on the BIRADS classification standard. In this paper we review different strategies for extracting features in tissue classification systems, and demonstrate, not only the feasibility of estimating breast density using automatic computer vision techniques, but also the benefits of segmentation of the breast based on internal tissue information. The evaluation of the methods is based on the full MIAS database classified according to BIRADS categories, and agreement between automatic and manual classification of 82% was obtained.lld:pubmed
pubmed-article:17354855pubmed:languageenglld:pubmed
pubmed-article:17354855pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17354855pubmed:citationSubsetIMlld:pubmed
pubmed-article:17354855pubmed:statusMEDLINElld:pubmed
pubmed-article:17354855pubmed:authorpubmed-author:ZwiggelaarRey...lld:pubmed
pubmed-article:17354855pubmed:authorpubmed-author:OliverArnauAlld:pubmed
pubmed-article:17354855pubmed:authorpubmed-author:FreixenetJord...lld:pubmed
pubmed-article:17354855pubmed:authorpubmed-author:MartíRobertRlld:pubmed
pubmed-article:17354855pubmed:volume9lld:pubmed
pubmed-article:17354855pubmed:ownerNLMlld:pubmed
pubmed-article:17354855pubmed:authorsCompleteYlld:pubmed
pubmed-article:17354855pubmed:pagination872-9lld:pubmed
pubmed-article:17354855pubmed:dateRevised2009-12-11lld:pubmed
pubmed-article:17354855pubmed:meshHeadingpubmed-meshheading:17354855...lld:pubmed
pubmed-article:17354855pubmed:meshHeadingpubmed-meshheading:17354855...lld:pubmed
pubmed-article:17354855pubmed:meshHeadingpubmed-meshheading:17354855...lld:pubmed
pubmed-article:17354855pubmed:meshHeadingpubmed-meshheading:17354855...lld:pubmed
pubmed-article:17354855pubmed:meshHeadingpubmed-meshheading:17354855...lld:pubmed
pubmed-article:17354855pubmed:meshHeadingpubmed-meshheading:17354855...lld:pubmed
pubmed-article:17354855pubmed:meshHeadingpubmed-meshheading:17354855...lld:pubmed
pubmed-article:17354855pubmed:meshHeadingpubmed-meshheading:17354855...lld:pubmed
pubmed-article:17354855pubmed:meshHeadingpubmed-meshheading:17354855...lld:pubmed
pubmed-article:17354855pubmed:meshHeadingpubmed-meshheading:17354855...lld:pubmed
pubmed-article:17354855pubmed:year2006lld:pubmed
pubmed-article:17354855pubmed:articleTitleA comparison of breast tissue classification techniques.lld:pubmed
pubmed-article:17354855pubmed:affiliationInstitute of Informatics and Applications, University of Girona Campus Montilivi, Ed. P-IV, 17071, Girona, Spain. aoliver@eia.udg.eslld:pubmed
pubmed-article:17354855pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:17354855pubmed:publicationTypeComparative Studylld:pubmed
pubmed-article:17354855pubmed:publicationTypeReviewlld:pubmed
pubmed-article:17354855pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
pubmed-article:17354855pubmed:publicationTypeEvaluation Studieslld:pubmed