Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:17218474rdf:typepubmed:Citationlld:pubmed
pubmed-article:17218474lifeskim:mentionsumls-concept:C0085979lld:lifeskim
pubmed-article:17218474lifeskim:mentionsumls-concept:C0021852lld:lifeskim
pubmed-article:17218474lifeskim:mentionsumls-concept:C0441635lld:lifeskim
pubmed-article:17218474lifeskim:mentionsumls-concept:C0205409lld:lifeskim
pubmed-article:17218474lifeskim:mentionsumls-concept:C0441712lld:lifeskim
pubmed-article:17218474pubmed:issue4lld:pubmed
pubmed-article:17218474pubmed:dateCreated2007-4-4lld:pubmed
pubmed-article:17218474pubmed:abstractTextMechanisms underlying nutrient-induced segmentation within the gut are not well understood. We have shown that decanoic acid and some amino acids induce neurally dependent segmentation in guinea pig small intestine in vitro. This study examined the neural mechanisms underlying segmentation in the circular muscle and whether the timing of segmentation contractions also depends on slow waves. Decanoic acid (1 mM) was infused into the lumen of guinea pig duodenum and jejunum. Video imaging was used to monitor intestinal diameter as a function of both longitudinal position and time. Circular muscle electrical activity was recorded by using suction electrodes. Recordings from sites of segmenting contractions showed they are always associated with excitatory junction potentials leading to action potentials. Recordings from sites oral and anal to segmenting contractions revealed inhibitory junction potentials that were time locked to those contractions. Slow waves were never observed underlying segmenting contractions. In paralyzed preparations, intracellular recording revealed that slow-wave frequency was highly consistent at 19.5 (SD 1.4) cycles per minute (c/min) in duodenum and 16.6 (SD 1.1) c/min in jejunum. By contrast, the frequencies of segmenting contractions varied widely (duodenum: 3.6-28.8 c/min, median 10.8 c/min; jejunum: 3.0-27.0 c/min, median 7.8 c/min) and sometimes exceeded slow-wave frequencies for that region. Thus nutrient-induced segmentation contractions in guinea pig small intestine do not depend on slow-wave activity. Rather they result from a neural circuit producing rhythmic localized activity in excitatory motor neurons, while simultaneously activating surrounding inhibitory motor neurons.lld:pubmed
pubmed-article:17218474pubmed:languageenglld:pubmed
pubmed-article:17218474pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17218474pubmed:citationSubsetIMlld:pubmed
pubmed-article:17218474pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17218474pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17218474pubmed:statusMEDLINElld:pubmed
pubmed-article:17218474pubmed:monthAprlld:pubmed
pubmed-article:17218474pubmed:issn0193-1857lld:pubmed
pubmed-article:17218474pubmed:authorpubmed-author:BornsteinJ...lld:pubmed
pubmed-article:17218474pubmed:authorpubmed-author:GwynneR MRMlld:pubmed
pubmed-article:17218474pubmed:issnTypePrintlld:pubmed
pubmed-article:17218474pubmed:volume292lld:pubmed
pubmed-article:17218474pubmed:ownerNLMlld:pubmed
pubmed-article:17218474pubmed:authorsCompleteYlld:pubmed
pubmed-article:17218474pubmed:paginationG1162-72lld:pubmed
pubmed-article:17218474pubmed:meshHeadingpubmed-meshheading:17218474...lld:pubmed
pubmed-article:17218474pubmed:meshHeadingpubmed-meshheading:17218474...lld:pubmed
pubmed-article:17218474pubmed:meshHeadingpubmed-meshheading:17218474...lld:pubmed
pubmed-article:17218474pubmed:meshHeadingpubmed-meshheading:17218474...lld:pubmed
pubmed-article:17218474pubmed:meshHeadingpubmed-meshheading:17218474...lld:pubmed
pubmed-article:17218474pubmed:meshHeadingpubmed-meshheading:17218474...lld:pubmed
pubmed-article:17218474pubmed:meshHeadingpubmed-meshheading:17218474...lld:pubmed
pubmed-article:17218474pubmed:meshHeadingpubmed-meshheading:17218474...lld:pubmed
pubmed-article:17218474pubmed:meshHeadingpubmed-meshheading:17218474...lld:pubmed
pubmed-article:17218474pubmed:meshHeadingpubmed-meshheading:17218474...lld:pubmed
pubmed-article:17218474pubmed:meshHeadingpubmed-meshheading:17218474...lld:pubmed
pubmed-article:17218474pubmed:meshHeadingpubmed-meshheading:17218474...lld:pubmed
pubmed-article:17218474pubmed:meshHeadingpubmed-meshheading:17218474...lld:pubmed
pubmed-article:17218474pubmed:year2007lld:pubmed
pubmed-article:17218474pubmed:articleTitleMechanisms underlying nutrient-induced segmentation in isolated guinea pig small intestine.lld:pubmed
pubmed-article:17218474pubmed:affiliationDepartment of Physiology, University of Melbourne, Parkville, Vic 3010, Australia. rgwynne@unimelb.edu.aulld:pubmed
pubmed-article:17218474pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:17218474pubmed:publicationTypeIn Vitrolld:pubmed
pubmed-article:17218474pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:17218474lld:pubmed