Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:17059591rdf:typepubmed:Citationlld:pubmed
pubmed-article:17059591lifeskim:mentionsumls-concept:C0220931lld:lifeskim
pubmed-article:17059591lifeskim:mentionsumls-concept:C1511726lld:lifeskim
pubmed-article:17059591lifeskim:mentionsumls-concept:C0036849lld:lifeskim
pubmed-article:17059591lifeskim:mentionsumls-concept:C2600034lld:lifeskim
pubmed-article:17059591lifeskim:mentionsumls-concept:C1442518lld:lifeskim
pubmed-article:17059591lifeskim:mentionsumls-concept:C1955272lld:lifeskim
pubmed-article:17059591lifeskim:mentionsumls-concept:C0242356lld:lifeskim
pubmed-article:17059591lifeskim:mentionsumls-concept:C1561577lld:lifeskim
pubmed-article:17059591lifeskim:mentionsumls-concept:C1552652lld:lifeskim
pubmed-article:17059591lifeskim:mentionsumls-concept:C0449445lld:lifeskim
pubmed-article:17059591lifeskim:mentionsumls-concept:C0205460lld:lifeskim
pubmed-article:17059591lifeskim:mentionsumls-concept:C1880371lld:lifeskim
pubmed-article:17059591lifeskim:mentionsumls-concept:C1552685lld:lifeskim
pubmed-article:17059591lifeskim:mentionsumls-concept:C1514811lld:lifeskim
pubmed-article:17059591lifeskim:mentionsumls-concept:C1705195lld:lifeskim
pubmed-article:17059591lifeskim:mentionsumls-concept:C1706462lld:lifeskim
pubmed-article:17059591pubmed:dateCreated2006-10-26lld:pubmed
pubmed-article:17059591pubmed:abstractTextMany of the most popular pre-processing methods for Affymetrix expression arrays, such as RMA, gcRMA, and PLIER, simultaneously analyze data across a set of predetermined arrays to improve precision of the final measures of expression. One problem associated with these algorithms is that expression measurements for a particular sample are highly dependent on the set of samples used for normalization and results obtained by normalization with a different set may not be comparable. A related problem is that an organization producing and/or storing large amounts of data in a sequential fashion will need to either re-run the pre-processing algorithm every time an array is added or store them in batches that are pre-processed together. Furthermore, pre-processing of large numbers of arrays requires loading all the feature-level data into memory which is a difficult task even with modern computers. We utilize a scheme that produces all the information necessary for pre-processing using a very large training set that can be used for summarization of samples outside of the training set. All subsequent pre-processing tasks can be done on an individual array basis. We demonstrate the utility of this approach by defining a new version of the Robust Multi-chip Averaging (RMA) algorithm which we refer to as refRMA.lld:pubmed
pubmed-article:17059591pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17059591pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17059591pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17059591pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17059591pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17059591pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17059591pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17059591pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17059591pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17059591pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17059591pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17059591pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17059591pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17059591pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17059591pubmed:languageenglld:pubmed
pubmed-article:17059591pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17059591pubmed:citationSubsetIMlld:pubmed
pubmed-article:17059591pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17059591pubmed:statusMEDLINElld:pubmed
pubmed-article:17059591pubmed:issn1471-2105lld:pubmed
pubmed-article:17059591pubmed:authorpubmed-author:IrizarryRafae...lld:pubmed
pubmed-article:17059591pubmed:authorpubmed-author:LinXueXlld:pubmed
pubmed-article:17059591pubmed:authorpubmed-author:TripputiMarkMlld:pubmed
pubmed-article:17059591pubmed:authorpubmed-author:KatzSimonSlld:pubmed
pubmed-article:17059591pubmed:authorpubmed-author:PorterMark...lld:pubmed
pubmed-article:17059591pubmed:issnTypeElectroniclld:pubmed
pubmed-article:17059591pubmed:volume7lld:pubmed
pubmed-article:17059591pubmed:ownerNLMlld:pubmed
pubmed-article:17059591pubmed:authorsCompleteYlld:pubmed
pubmed-article:17059591pubmed:pagination464lld:pubmed
pubmed-article:17059591pubmed:dateRevised2009-11-18lld:pubmed
pubmed-article:17059591pubmed:meshHeadingpubmed-meshheading:17059591...lld:pubmed
pubmed-article:17059591pubmed:meshHeadingpubmed-meshheading:17059591...lld:pubmed
pubmed-article:17059591pubmed:meshHeadingpubmed-meshheading:17059591...lld:pubmed
pubmed-article:17059591pubmed:meshHeadingpubmed-meshheading:17059591...lld:pubmed
pubmed-article:17059591pubmed:meshHeadingpubmed-meshheading:17059591...lld:pubmed
pubmed-article:17059591pubmed:meshHeadingpubmed-meshheading:17059591...lld:pubmed
pubmed-article:17059591pubmed:meshHeadingpubmed-meshheading:17059591...lld:pubmed
pubmed-article:17059591pubmed:meshHeadingpubmed-meshheading:17059591...lld:pubmed
pubmed-article:17059591pubmed:meshHeadingpubmed-meshheading:17059591...lld:pubmed
pubmed-article:17059591pubmed:meshHeadingpubmed-meshheading:17059591...lld:pubmed
pubmed-article:17059591pubmed:year2006lld:pubmed
pubmed-article:17059591pubmed:articleTitleA summarization approach for Affymetrix GeneChip data using a reference training set from a large, biologically diverse database.lld:pubmed
pubmed-article:17059591pubmed:affiliationGene Logic Inc., 610 Professional Dr, Gaithersburg, MD, 20876, USA. skatz@genelogic.comlld:pubmed
pubmed-article:17059591pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:17059591pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
pubmed-article:17059591pubmed:publicationTypeEvaluation Studieslld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:17059591lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:17059591lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:17059591lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:17059591lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:17059591lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:17059591lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:17059591lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:17059591lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:17059591lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:17059591lld:pubmed