pubmed-article:17059591 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:17059591 | lifeskim:mentions | umls-concept:C0220931 | lld:lifeskim |
pubmed-article:17059591 | lifeskim:mentions | umls-concept:C1511726 | lld:lifeskim |
pubmed-article:17059591 | lifeskim:mentions | umls-concept:C0036849 | lld:lifeskim |
pubmed-article:17059591 | lifeskim:mentions | umls-concept:C2600034 | lld:lifeskim |
pubmed-article:17059591 | lifeskim:mentions | umls-concept:C1442518 | lld:lifeskim |
pubmed-article:17059591 | lifeskim:mentions | umls-concept:C1955272 | lld:lifeskim |
pubmed-article:17059591 | lifeskim:mentions | umls-concept:C0242356 | lld:lifeskim |
pubmed-article:17059591 | lifeskim:mentions | umls-concept:C1561577 | lld:lifeskim |
pubmed-article:17059591 | lifeskim:mentions | umls-concept:C1552652 | lld:lifeskim |
pubmed-article:17059591 | lifeskim:mentions | umls-concept:C0449445 | lld:lifeskim |
pubmed-article:17059591 | lifeskim:mentions | umls-concept:C0205460 | lld:lifeskim |
pubmed-article:17059591 | lifeskim:mentions | umls-concept:C1880371 | lld:lifeskim |
pubmed-article:17059591 | lifeskim:mentions | umls-concept:C1552685 | lld:lifeskim |
pubmed-article:17059591 | lifeskim:mentions | umls-concept:C1514811 | lld:lifeskim |
pubmed-article:17059591 | lifeskim:mentions | umls-concept:C1705195 | lld:lifeskim |
pubmed-article:17059591 | lifeskim:mentions | umls-concept:C1706462 | lld:lifeskim |
pubmed-article:17059591 | pubmed:dateCreated | 2006-10-26 | lld:pubmed |
pubmed-article:17059591 | pubmed:abstractText | Many of the most popular pre-processing methods for Affymetrix expression arrays, such as RMA, gcRMA, and PLIER, simultaneously analyze data across a set of predetermined arrays to improve precision of the final measures of expression. One problem associated with these algorithms is that expression measurements for a particular sample are highly dependent on the set of samples used for normalization and results obtained by normalization with a different set may not be comparable. A related problem is that an organization producing and/or storing large amounts of data in a sequential fashion will need to either re-run the pre-processing algorithm every time an array is added or store them in batches that are pre-processed together. Furthermore, pre-processing of large numbers of arrays requires loading all the feature-level data into memory which is a difficult task even with modern computers. We utilize a scheme that produces all the information necessary for pre-processing using a very large training set that can be used for summarization of samples outside of the training set. All subsequent pre-processing tasks can be done on an individual array basis. We demonstrate the utility of this approach by defining a new version of the Robust Multi-chip Averaging (RMA) algorithm which we refer to as refRMA. | lld:pubmed |
pubmed-article:17059591 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17059591 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17059591 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17059591 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17059591 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17059591 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17059591 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17059591 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17059591 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17059591 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17059591 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17059591 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17059591 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17059591 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17059591 | pubmed:language | eng | lld:pubmed |
pubmed-article:17059591 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17059591 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:17059591 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17059591 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:17059591 | pubmed:issn | 1471-2105 | lld:pubmed |
pubmed-article:17059591 | pubmed:author | pubmed-author:IrizarryRafae... | lld:pubmed |
pubmed-article:17059591 | pubmed:author | pubmed-author:LinXueX | lld:pubmed |
pubmed-article:17059591 | pubmed:author | pubmed-author:TripputiMarkM | lld:pubmed |
pubmed-article:17059591 | pubmed:author | pubmed-author:KatzSimonS | lld:pubmed |
pubmed-article:17059591 | pubmed:author | pubmed-author:PorterMark... | lld:pubmed |
pubmed-article:17059591 | pubmed:issnType | Electronic | lld:pubmed |
pubmed-article:17059591 | pubmed:volume | 7 | lld:pubmed |
pubmed-article:17059591 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:17059591 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:17059591 | pubmed:pagination | 464 | lld:pubmed |
pubmed-article:17059591 | pubmed:dateRevised | 2009-11-18 | lld:pubmed |
pubmed-article:17059591 | pubmed:meshHeading | pubmed-meshheading:17059591... | lld:pubmed |
pubmed-article:17059591 | pubmed:meshHeading | pubmed-meshheading:17059591... | lld:pubmed |
pubmed-article:17059591 | pubmed:meshHeading | pubmed-meshheading:17059591... | lld:pubmed |
pubmed-article:17059591 | pubmed:meshHeading | pubmed-meshheading:17059591... | lld:pubmed |
pubmed-article:17059591 | pubmed:meshHeading | pubmed-meshheading:17059591... | lld:pubmed |
pubmed-article:17059591 | pubmed:meshHeading | pubmed-meshheading:17059591... | lld:pubmed |
pubmed-article:17059591 | pubmed:meshHeading | pubmed-meshheading:17059591... | lld:pubmed |
pubmed-article:17059591 | pubmed:meshHeading | pubmed-meshheading:17059591... | lld:pubmed |
pubmed-article:17059591 | pubmed:meshHeading | pubmed-meshheading:17059591... | lld:pubmed |
pubmed-article:17059591 | pubmed:meshHeading | pubmed-meshheading:17059591... | lld:pubmed |
pubmed-article:17059591 | pubmed:year | 2006 | lld:pubmed |
pubmed-article:17059591 | pubmed:articleTitle | A summarization approach for Affymetrix GeneChip data using a reference training set from a large, biologically diverse database. | lld:pubmed |
pubmed-article:17059591 | pubmed:affiliation | Gene Logic Inc., 610 Professional Dr, Gaithersburg, MD, 20876, USA. skatz@genelogic.com | lld:pubmed |
pubmed-article:17059591 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:17059591 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |
pubmed-article:17059591 | pubmed:publicationType | Evaluation Studies | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:17059591 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:17059591 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:17059591 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:17059591 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:17059591 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:17059591 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:17059591 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:17059591 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:17059591 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:17059591 | lld:pubmed |