pubmed-article:16806243 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:16806243 | lifeskim:mentions | umls-concept:C0033095 | lld:lifeskim |
pubmed-article:16806243 | lifeskim:mentions | umls-concept:C0008562 | lld:lifeskim |
pubmed-article:16806243 | lifeskim:mentions | umls-concept:C0080037 | lld:lifeskim |
pubmed-article:16806243 | lifeskim:mentions | umls-concept:C0016884 | lld:lifeskim |
pubmed-article:16806243 | pubmed:issue | 1 | lld:pubmed |
pubmed-article:16806243 | pubmed:dateCreated | 2006-9-25 | lld:pubmed |
pubmed-article:16806243 | pubmed:abstractText | Making a theoretical study supported by experiments of the kinetic advantages of increased inlet pressures versus increased external porosity using impedance plots of analysis time versus required plate number, it is found that both approaches more or less have the same effect on the kinetic performance. The need to change a given system to one with an increased inlet pressure or with an increased external porosity can best be assessed from the optimal plate number (N(opt)) of the system. When the pursued application requires a plate number that is larger than N(opt), any increase in inlet pressure and external porosity is beneficial. When the required plate number is smaller than N(opt), any increase in inlet pressure and external porosity should preferentially be accompanied by an overall reduction of the feature sizes of the support. The degree to which this feature size reduction can be realized in practice will to a large extent determine which of the two approaches will be the dominant system of the future. | lld:pubmed |
pubmed-article:16806243 | pubmed:language | eng | lld:pubmed |
pubmed-article:16806243 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:16806243 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:16806243 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:16806243 | pubmed:month | Oct | lld:pubmed |
pubmed-article:16806243 | pubmed:issn | 1873-3778 | lld:pubmed |
pubmed-article:16806243 | pubmed:author | pubmed-author:DesmetGertG | lld:pubmed |
pubmed-article:16806243 | pubmed:author | pubmed-author:HeydenYvan... | lld:pubmed |
pubmed-article:16806243 | pubmed:author | pubmed-author:ClicqDavidD | lld:pubmed |
pubmed-article:16806243 | pubmed:author | pubmed-author:GzilPiotrP | lld:pubmed |
pubmed-article:16806243 | pubmed:author | pubmed-author:MangelingsDeb... | lld:pubmed |
pubmed-article:16806243 | pubmed:author | pubmed-author:CabooterDeird... | lld:pubmed |
pubmed-article:16806243 | pubmed:author | pubmed-author:VerelstHarryH | lld:pubmed |
pubmed-article:16806243 | pubmed:issnType | Electronic | lld:pubmed |
pubmed-article:16806243 | pubmed:day | 13 | lld:pubmed |
pubmed-article:16806243 | pubmed:volume | 1130 | lld:pubmed |
pubmed-article:16806243 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:16806243 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:16806243 | pubmed:pagination | 158-66 | lld:pubmed |
pubmed-article:16806243 | pubmed:meshHeading | pubmed-meshheading:16806243... | lld:pubmed |
pubmed-article:16806243 | pubmed:meshHeading | pubmed-meshheading:16806243... | lld:pubmed |
pubmed-article:16806243 | pubmed:meshHeading | pubmed-meshheading:16806243... | lld:pubmed |
pubmed-article:16806243 | pubmed:meshHeading | pubmed-meshheading:16806243... | lld:pubmed |
pubmed-article:16806243 | pubmed:meshHeading | pubmed-meshheading:16806243... | lld:pubmed |
pubmed-article:16806243 | pubmed:year | 2006 | lld:pubmed |
pubmed-article:16806243 | pubmed:articleTitle | Future of high pressure liquid chromatography: do we need porosity or do we need pressure? | lld:pubmed |
pubmed-article:16806243 | pubmed:affiliation | Vrije Universiteit Brussel, Department of Chemical Engineering, 1050 Brussels, Belgium. | lld:pubmed |
pubmed-article:16806243 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:16806243 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |