Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:16667215rdf:typepubmed:Citationlld:pubmed
pubmed-article:16667215lifeskim:mentionsumls-concept:C0025519lld:lifeskim
pubmed-article:16667215lifeskim:mentionsumls-concept:C0008858lld:lifeskim
pubmed-article:16667215lifeskim:mentionsumls-concept:C0007009lld:lifeskim
pubmed-article:16667215lifeskim:mentionsumls-concept:C1704259lld:lifeskim
pubmed-article:16667215lifeskim:mentionsumls-concept:C0002611lld:lifeskim
pubmed-article:16667215lifeskim:mentionsumls-concept:C0311404lld:lifeskim
pubmed-article:16667215lifeskim:mentionsumls-concept:C1705987lld:lifeskim
pubmed-article:16667215lifeskim:mentionsumls-concept:C0728938lld:lifeskim
pubmed-article:16667215lifeskim:mentionsumls-concept:C0332120lld:lifeskim
pubmed-article:16667215pubmed:issue4lld:pubmed
pubmed-article:16667215pubmed:dateCreated2010-6-29lld:pubmed
pubmed-article:16667215pubmed:abstractTextNitrogen-limited cells of Selenastrum minutum (Naeg.) Collins are able to assimilate NH(4) (+) in the dark under anaerobic conditions. Addition of NH(4) (+) to anaerobic cells results in a threefold increase in tricarboxylic acid cycle (TCAC) CO(2) efflux and an eightfold increase in the rate of anaplerotic carbon fixation via phosphoenolpyruvate carboxylase. Both of these observations are consistent with increased TCAC carbon flow to supply intermediates for amino acid biosynthesis. Addition of H(14)CO(3) (-) to anaerobic cells assimilating NH(4) (+) results in the incorporation of radiolabel into the alpha-carboxyl carbon of glutamic acid. Incorporation of radiolabel into glutamic acid is not simply a short-term phenomenon following NH(4) (+) addition as the specific activity of glutamic acid increases over time. This indicates that this alga is able to maintain partial oxidative TCAC carbon flow while under anoxia to supply alpha-ketoglutarate for glutamate production. During dark aerobic NH(4) (+) assimilation, no radiolabel appears in fumarate or succinate and only a small amount occurs in malate. During anaerobic NH(4) (+) assimilation, these metabolites contain a large proportion of the total radiolabel and radiolabel accumulates in succinate over time. Also, the ratio of dark carbon fixation to NH(4) (+) assimilation is much higher under anaerobic than aerobic conditions. These observations suggest the operation of a partial reductive TCAC from oxaloacetic acid to malate, fumarate, and succinate. Such a pathway might contribute to redox balance in an anaerobic cell maintaining partial oxidative TCAC activity.lld:pubmed
pubmed-article:16667215pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:16667215pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:16667215pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:16667215pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:16667215pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:16667215pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:16667215pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:16667215pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:16667215pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:16667215pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:16667215pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:16667215pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:16667215pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:16667215pubmed:languageenglld:pubmed
pubmed-article:16667215pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:16667215pubmed:statusPubMed-not-MEDLINElld:pubmed
pubmed-article:16667215pubmed:monthDeclld:pubmed
pubmed-article:16667215pubmed:issn0032-0889lld:pubmed
pubmed-article:16667215pubmed:authorpubmed-author:TurpinD HDHlld:pubmed
pubmed-article:16667215pubmed:authorpubmed-author:VanlerbergheG...lld:pubmed
pubmed-article:16667215pubmed:authorpubmed-author:WegerH GHGlld:pubmed
pubmed-article:16667215pubmed:authorpubmed-author:HorseyA KAKlld:pubmed
pubmed-article:16667215pubmed:issnTypePrintlld:pubmed
pubmed-article:16667215pubmed:volume91lld:pubmed
pubmed-article:16667215pubmed:ownerNLMlld:pubmed
pubmed-article:16667215pubmed:authorsCompleteYlld:pubmed
pubmed-article:16667215pubmed:pagination1551-7lld:pubmed
pubmed-article:16667215pubmed:dateRevised2010-9-14lld:pubmed
pubmed-article:16667215pubmed:year1989lld:pubmed
pubmed-article:16667215pubmed:articleTitleAnaerobic Carbon Metabolism by the Tricarboxylic Acid Cycle : Evidence for Partial Oxidative and Reductive Pathways during Dark Ammonium Assimilation.lld:pubmed
pubmed-article:16667215pubmed:affiliationDepartment of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6.lld:pubmed
pubmed-article:16667215pubmed:publicationTypeJournal Articlelld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:16667215lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:16667215lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:16667215lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:16667215lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:16667215lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:16667215lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:16667215lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:16667215lld:pubmed