Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:16571376rdf:typepubmed:Citationlld:pubmed
pubmed-article:16571376lifeskim:mentionsumls-concept:C0043047lld:lifeskim
pubmed-article:16571376lifeskim:mentionsumls-concept:C0178719lld:lifeskim
pubmed-article:16571376lifeskim:mentionsumls-concept:C0034107lld:lifeskim
pubmed-article:16571376lifeskim:mentionsumls-concept:C1444754lld:lifeskim
pubmed-article:16571376lifeskim:mentionsumls-concept:C1264633lld:lifeskim
pubmed-article:16571376lifeskim:mentionsumls-concept:C0812409lld:lifeskim
pubmed-article:16571376lifeskim:mentionsumls-concept:C1136216lld:lifeskim
pubmed-article:16571376lifeskim:mentionsumls-concept:C1283195lld:lifeskim
pubmed-article:16571376pubmed:issue2lld:pubmed
pubmed-article:16571376pubmed:dateCreated2006-5-15lld:pubmed
pubmed-article:16571376pubmed:abstractTextFinite gradient pulse lengths are traditionally considered a nuisance in q-space diffusion NMR and MRI, since the simple Fourier relation between the acquired signal and the displacement probability is invalidated. Increasing the value of the pulse length leads to an apparently smaller value of the estimated compartment size. We propose that q-space data at different gradient pulse lengths, but with the same effective diffusion time, can be used to identify and quantify components with free or restricted diffusion from multiexponential echo decay curves obtained on cellular systems. The method is demonstrated with experiments on excised human brain white matter and a series of model systems with well-defined free, restricted, and combined free and restricted diffusion behavior. Time-resolved diffusion MRI experiments are used to map the spatial distribution of the intracellular fraction in a yeast cell suspension during sedimentation, and observe the disappearance of this fraction after a heat treatment.lld:pubmed
pubmed-article:16571376pubmed:languageenglld:pubmed
pubmed-article:16571376pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:16571376pubmed:statusPubMed-not-MEDLINElld:pubmed
pubmed-article:16571376pubmed:monthJunlld:pubmed
pubmed-article:16571376pubmed:issn1090-7807lld:pubmed
pubmed-article:16571376pubmed:authorpubmed-author:TopgaardDanie...lld:pubmed
pubmed-article:16571376pubmed:authorpubmed-author:MalmborgCarin...lld:pubmed
pubmed-article:16571376pubmed:authorpubmed-author:SödermanOlleOlld:pubmed
pubmed-article:16571376pubmed:authorpubmed-author:SjöbeckMartin...lld:pubmed
pubmed-article:16571376pubmed:authorpubmed-author:BrockstedtSar...lld:pubmed
pubmed-article:16571376pubmed:authorpubmed-author:EnglundElisab...lld:pubmed
pubmed-article:16571376pubmed:issnTypePrintlld:pubmed
pubmed-article:16571376pubmed:volume180lld:pubmed
pubmed-article:16571376pubmed:ownerNLMlld:pubmed
pubmed-article:16571376pubmed:authorsCompleteYlld:pubmed
pubmed-article:16571376pubmed:pagination280-5lld:pubmed
pubmed-article:16571376pubmed:year2006lld:pubmed
pubmed-article:16571376pubmed:articleTitleMapping the intracellular fraction of water by varying the gradient pulse length in q-space diffusion MRI.lld:pubmed
pubmed-article:16571376pubmed:affiliationDepartment of Physical Chemistry 1, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.lld:pubmed
pubmed-article:16571376pubmed:publicationTypeJournal Articlelld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:16571376lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:16571376lld:pubmed