Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:15348025rdf:typepubmed:Citationlld:pubmed
pubmed-article:15348025lifeskim:mentionsumls-concept:C0004927lld:lifeskim
pubmed-article:15348025lifeskim:mentionsumls-concept:C0040302lld:lifeskim
pubmed-article:15348025lifeskim:mentionsumls-concept:C0021102lld:lifeskim
pubmed-article:15348025lifeskim:mentionsumls-concept:C0010106lld:lifeskim
pubmed-article:15348025lifeskim:mentionsumls-concept:C0011323lld:lifeskim
pubmed-article:15348025lifeskim:mentionsumls-concept:C1948027lld:lifeskim
pubmed-article:15348025pubmed:issue5lld:pubmed
pubmed-article:15348025pubmed:dateCreated2004-9-6lld:pubmed
pubmed-article:15348025pubmed:abstractTextThe corrosion of five materials for implant suprastructures (cast-titanium, machined-titanium, gold alloy, silver-palladium alloy and chromium-nickel alloy), was investigated in vitro, the materials being galvanically coupled to a titanium implant. Various electrochemical parameters E(CORR), i(CORR) Evans diagrams, polarization resistance and Tafel slopes) were analyzed. The microstructure of the different dental materials was observed before and after corrosion processes by optical and electron microscopy. Besides, the metallic ions released in the saliva environment were quantified during the corrosion process by means of inductively coupled plasma-mass spectrometry technique (ICP-MS). The cast and machined titanium had the most passive current density at a given potential and chromium-nickel alloy had the most active critical current density values. The high gold content alloys have excellent resistance corrosion, although this decreases when the gold content is lower in the alloy. The palladium alloy had a low critical current density due to the presence of gallium in this composition but a selective dissolution of copper-rich phases was observed through energy dispersive X-ray analysis.lld:pubmed
pubmed-article:15348025pubmed:languageenglld:pubmed
pubmed-article:15348025pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:15348025pubmed:statusPubMed-not-MEDLINElld:pubmed
pubmed-article:15348025pubmed:monthMaylld:pubmed
pubmed-article:15348025pubmed:issn0957-4530lld:pubmed
pubmed-article:15348025pubmed:authorpubmed-author:CostaSSlld:pubmed
pubmed-article:15348025pubmed:authorpubmed-author:RodríguezDDlld:pubmed
pubmed-article:15348025pubmed:authorpubmed-author:GilF JFJlld:pubmed
pubmed-article:15348025pubmed:authorpubmed-author:CortadaMMlld:pubmed
pubmed-article:15348025pubmed:authorpubmed-author:GinerLLlld:pubmed
pubmed-article:15348025pubmed:authorpubmed-author:PlanellJ AJAlld:pubmed
pubmed-article:15348025pubmed:copyrightInfoCopyright 2000 Kluwer Academic Publisherslld:pubmed
pubmed-article:15348025pubmed:issnTypePrintlld:pubmed
pubmed-article:15348025pubmed:volume11lld:pubmed
pubmed-article:15348025pubmed:ownerNLMlld:pubmed
pubmed-article:15348025pubmed:authorsCompleteYlld:pubmed
pubmed-article:15348025pubmed:pagination287-93lld:pubmed
pubmed-article:15348025pubmed:year2000lld:pubmed
pubmed-article:15348025pubmed:articleTitleGalvanic corrosion behavior of titanium implants coupled to dental alloys.lld:pubmed
pubmed-article:15348025pubmed:affiliationFacultad de Ciencias de la Salud, Universidad Internacional de Cataluña, Campus de San Cugat del Vallès, Barcelona, Spain.lld:pubmed
pubmed-article:15348025pubmed:publicationTypeJournal Articlelld:pubmed