Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:15302553rdf:typepubmed:Citationlld:pubmed
pubmed-article:15302553lifeskim:mentionsumls-concept:C0086418lld:lifeskim
pubmed-article:15302553lifeskim:mentionsumls-concept:C0025914lld:lifeskim
pubmed-article:15302553lifeskim:mentionsumls-concept:C0026809lld:lifeskim
pubmed-article:15302553lifeskim:mentionsumls-concept:C0017337lld:lifeskim
pubmed-article:15302553lifeskim:mentionsumls-concept:C0009221lld:lifeskim
pubmed-article:15302553lifeskim:mentionsumls-concept:C0036849lld:lifeskim
pubmed-article:15302553lifeskim:mentionsumls-concept:C0242568lld:lifeskim
pubmed-article:15302553lifeskim:mentionsumls-concept:C1442518lld:lifeskim
pubmed-article:15302553lifeskim:mentionsumls-concept:C1552652lld:lifeskim
pubmed-article:15302553lifeskim:mentionsumls-concept:C1552685lld:lifeskim
pubmed-article:15302553lifeskim:mentionsumls-concept:C1705195lld:lifeskim
pubmed-article:15302553pubmed:issue2lld:pubmed
pubmed-article:15302553pubmed:dateCreated2004-8-10lld:pubmed
pubmed-article:15302553pubmed:abstractTextTo better conceptualize the mechanism underlying the evolution of synonymous codons, we have analysed intragenic codon usage in chosen "regions" of some mouse and human genes. We divided a given gene into two regions: one consisting of a trinucleotide repeat (TNR) and the other consisting of the "rest of the coding region" (RCR). Usually, a TNR is composed of a repetitive single codon, which may reflect its frequency in a gene. In contrast, a non-random frequency of a codon in the RCR versus TNR (or vice versa) of a gene should indicate a bias for that codon within the TNR. We examined this scenario by comparing codon frequency between the RCR and the cognate TNR(s) for a set of human and mouse genes. A TNR length of six amino acids or more was used to identify genes from the Genbank database. Twenty nine human and twenty one mouse genes containing TNRs coding for nine different amino acid runs were identified. The ratio of codon frequency in a TNR versus the corresponding RCR was expressed as "fold change" which was also regarded as a measure of codon bias (defined as preferential use either in TNR or in RCR). Chi-square values were then determined from the distribution of codon frequency in a TNR vs. the cognate RCR. At p<0.001, 22% and 27%, respectively, of human and mouse TNRs showed codon bias. Greater than 40% of the TNRs (29 out of 69 in human, and 18 of 42 in mouse) showed codon bias at p<0.05. In addition, we identify eight single-codon TNRs in mouse and ten in human genes. Thus, our results show intragenic codon bias in both mouse and human genes expressed in diverse tissue types. Since our results are independent of the Codon Adaptation Index (CAI) and starvation CAI, and since the tRNA repertoire in a cell or in a tissue is constant, our data suggest that other constraints besides tRNA abundance played a role in creating intragenic codon bias in these genes.lld:pubmed
pubmed-article:15302553pubmed:languageenglld:pubmed
pubmed-article:15302553pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:15302553pubmed:citationSubsetIMlld:pubmed
pubmed-article:15302553pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:15302553pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:15302553pubmed:statusMEDLINElld:pubmed
pubmed-article:15302553pubmed:monthSeplld:pubmed
pubmed-article:15302553pubmed:issn0022-5193lld:pubmed
pubmed-article:15302553pubmed:authorpubmed-author:BogorodskaiaE...lld:pubmed
pubmed-article:15302553pubmed:authorpubmed-author:SrivastavaAlo...lld:pubmed
pubmed-article:15302553pubmed:authorpubmed-author:DesaiDinakarDlld:pubmed
pubmed-article:15302553pubmed:authorpubmed-author:BarikSailenSlld:pubmed
pubmed-article:15302553pubmed:authorpubmed-author:SarkarGobinda...lld:pubmed
pubmed-article:15302553pubmed:authorpubmed-author:BolanderM E...lld:pubmed
pubmed-article:15302553pubmed:issnTypePrintlld:pubmed
pubmed-article:15302553pubmed:day21lld:pubmed
pubmed-article:15302553pubmed:volume230lld:pubmed
pubmed-article:15302553pubmed:ownerNLMlld:pubmed
pubmed-article:15302553pubmed:authorsCompleteYlld:pubmed
pubmed-article:15302553pubmed:pagination215-25lld:pubmed
pubmed-article:15302553pubmed:dateRevised2006-11-15lld:pubmed
pubmed-article:15302553pubmed:meshHeadingpubmed-meshheading:15302553...lld:pubmed
pubmed-article:15302553pubmed:meshHeadingpubmed-meshheading:15302553...lld:pubmed
pubmed-article:15302553pubmed:meshHeadingpubmed-meshheading:15302553...lld:pubmed
pubmed-article:15302553pubmed:meshHeadingpubmed-meshheading:15302553...lld:pubmed
pubmed-article:15302553pubmed:meshHeadingpubmed-meshheading:15302553...lld:pubmed
pubmed-article:15302553pubmed:meshHeadingpubmed-meshheading:15302553...lld:pubmed
pubmed-article:15302553pubmed:meshHeadingpubmed-meshheading:15302553...lld:pubmed
pubmed-article:15302553pubmed:meshHeadingpubmed-meshheading:15302553...lld:pubmed
pubmed-article:15302553pubmed:year2004lld:pubmed
pubmed-article:15302553pubmed:articleTitleIntragenic codon bias in a set of mouse and human genes.lld:pubmed
pubmed-article:15302553pubmed:affiliationDepartment of Orthopedics, Mayo Clinic and Foundation, Medical Science Building 3-69, 200 1st Street, SW, Rochester, MN 55905, USA.lld:pubmed
pubmed-article:15302553pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:15302553pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed