Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:1491020rdf:typepubmed:Citationlld:pubmed
pubmed-article:1491020lifeskim:mentionsumls-concept:C0026339lld:lifeskim
pubmed-article:1491020lifeskim:mentionsumls-concept:C0026336lld:lifeskim
pubmed-article:1491020lifeskim:mentionsumls-concept:C0004927lld:lifeskim
pubmed-article:1491020lifeskim:mentionsumls-concept:C0679083lld:lifeskim
pubmed-article:1491020pubmed:issue12lld:pubmed
pubmed-article:1491020pubmed:dateCreated1993-2-26lld:pubmed
pubmed-article:1491020pubmed:abstractTextThe process of adaptive bone remodeling can be described mathematically and simulated in a computer model, integrated with the finite element method. In the model discussed here, cortical and trabecular bone are described as continuous materials with variable density. The remodeling rule applied to simulate the remodeling process in each element individually is, in fact, an objective function for an optimization process, relative to the external load. Its purpose is to obtain a constant, preset value for the strain energy per unit bone mass, by adapting the density. If an element in the structure cannot achieve that, it either turns to its maximal density (cortical bone) or resorbs completely. It is found that the solution obtained in generally a discontinuous patchwork. For a two-dimensional proximal femur model this patchwork shows a good resemblance with the density distribution of a real proximal femur. It is shown that the discontinuous end configuration is dictated by the nature of the differential equations describing the remodeling process. This process can be considered as a nonlinear dynamical system with many degrees of freedom, which behaves divergent relative to the objective, leading to many possible solutions. The precise solution is dependent on the parameters in the remodeling rule, the load and the initial conditions. The feedback mechanism in the process is self-enhancing, denser bone attracts more strain energy, whereby the bone becomes even more dense. It is suggested that this positive feedback of the attractor state (the strain energy field) creates order in the end configuration. In addition, the process ensures that the discontinuous end configuration is a structure with a relatively low mass, perhaps a minimal-mass structure, although this is no explicit objective in the optimization process. It is hypothesized that trabecular bone is a chaotically ordered structure which can be considered as a fractal with characteristics of optimal mechanical resistance and minimal mass, of which the actual morphology depends on the local (internal) loading characteristics, the sensor-cell density and the degree of mineralization.lld:pubmed
pubmed-article:1491020pubmed:languageenglld:pubmed
pubmed-article:1491020pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:1491020pubmed:citationSubsetIMlld:pubmed
pubmed-article:1491020pubmed:statusMEDLINElld:pubmed
pubmed-article:1491020pubmed:monthDeclld:pubmed
pubmed-article:1491020pubmed:issn0021-9290lld:pubmed
pubmed-article:1491020pubmed:authorpubmed-author:HuiskesRRlld:pubmed
pubmed-article:1491020pubmed:authorpubmed-author:GrootenboerH...lld:pubmed
pubmed-article:1491020pubmed:authorpubmed-author:WeinansHHlld:pubmed
pubmed-article:1491020pubmed:issnTypePrintlld:pubmed
pubmed-article:1491020pubmed:volume25lld:pubmed
pubmed-article:1491020pubmed:ownerNLMlld:pubmed
pubmed-article:1491020pubmed:authorsCompleteYlld:pubmed
pubmed-article:1491020pubmed:pagination1425-41lld:pubmed
pubmed-article:1491020pubmed:dateRevised2009-11-11lld:pubmed
pubmed-article:1491020pubmed:meshHeadingpubmed-meshheading:1491020-...lld:pubmed
pubmed-article:1491020pubmed:meshHeadingpubmed-meshheading:1491020-...lld:pubmed
pubmed-article:1491020pubmed:meshHeadingpubmed-meshheading:1491020-...lld:pubmed
pubmed-article:1491020pubmed:meshHeadingpubmed-meshheading:1491020-...lld:pubmed
pubmed-article:1491020pubmed:meshHeadingpubmed-meshheading:1491020-...lld:pubmed
pubmed-article:1491020pubmed:meshHeadingpubmed-meshheading:1491020-...lld:pubmed
pubmed-article:1491020pubmed:meshHeadingpubmed-meshheading:1491020-...lld:pubmed
pubmed-article:1491020pubmed:meshHeadingpubmed-meshheading:1491020-...lld:pubmed
pubmed-article:1491020pubmed:meshHeadingpubmed-meshheading:1491020-...lld:pubmed
pubmed-article:1491020pubmed:meshHeadingpubmed-meshheading:1491020-...lld:pubmed
pubmed-article:1491020pubmed:meshHeadingpubmed-meshheading:1491020-...lld:pubmed
pubmed-article:1491020pubmed:meshHeadingpubmed-meshheading:1491020-...lld:pubmed
pubmed-article:1491020pubmed:year1992lld:pubmed
pubmed-article:1491020pubmed:articleTitleThe behavior of adaptive bone-remodeling simulation models.lld:pubmed
pubmed-article:1491020pubmed:affiliationBiomechanics Section, University of Nijmegen, The Netherlands.lld:pubmed
pubmed-article:1491020pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:1491020pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:1491020lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:1491020lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:1491020lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:1491020lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:1491020lld:pubmed