pubmed-article:1460010 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:1460010 | lifeskim:mentions | umls-concept:C0023779 | lld:lifeskim |
pubmed-article:1460010 | lifeskim:mentions | umls-concept:C1704675 | lld:lifeskim |
pubmed-article:1460010 | lifeskim:mentions | umls-concept:C0205681 | lld:lifeskim |
pubmed-article:1460010 | lifeskim:mentions | umls-concept:C0600499 | lld:lifeskim |
pubmed-article:1460010 | lifeskim:mentions | umls-concept:C1710236 | lld:lifeskim |
pubmed-article:1460010 | lifeskim:mentions | umls-concept:C0205224 | lld:lifeskim |
pubmed-article:1460010 | lifeskim:mentions | umls-concept:C2932881 | lld:lifeskim |
pubmed-article:1460010 | pubmed:issue | 35 | lld:pubmed |
pubmed-article:1460010 | pubmed:dateCreated | 1993-1-12 | lld:pubmed |
pubmed-article:1460010 | pubmed:abstractText | Lipoprotein lipase (LPL), a key enzyme which initiates the hydrolysis of triglycerides present in chylomicrons and very low density lipoproteins, consists of multiple functional domains which are necessary for normal activity. The catalytic domain of LPL mediates the esterase function of the enzyme but separate lipid binding sites have been proposed to be involved in the interaction of LPL with emulsified lipid substrates at the water-lipid interface. Like pancreatic lipase (PL), LPL contains a surface loop covering the catalytic pocket that may modulate access of the substrate to the active site of the enzyme. Secondary structural analysis of this loop reveals a helix-turn-helix motif with two short amphipathic helices that have hydrophobic moments of 0.64 and 0.68. In order to investigate the role of the loop in the initial interaction of LPL with its substrate, we utilized site-directed mutagenesis to generate eight constructs in which the amphipathic properties of the loop were altered and expressed them in human embryonal kidney-293 cells. Reducing the amphiphilicity without changing the predicted secondary structure of the loop abolished the ability of the lipase to hydrolyze emulsified, long chain fatty acid triglycerides (triolein) but not the water soluble substrate tributyrin. Replacing the loop of LPL with the loop of hepatic lipase, which differs in 15 of 22 amino acids but is also amphiphilic, led to the expression of an enzyme that retained both triolein and tributyrin hydrolyzing activity. Substitution of the LPL loop by a short four amino acid peptide, which may allow more direct access to the active site than the 22 amino acid loop, enhanced hydrolysis of short chain fatty acid triglycerides by more than 2-fold, while the ability to hydrolyze emulsified substrates was abolished. Thus, disruption of the amphipathic structure of the LPL loop selectively decreases the hydrolysis of emulsified lipid substrate without affecting the esterase or catalytic function of the enzyme. These studies establish that the loop with its two amphipathic helices is essential for hydrolysis of long chain fatty acid substrate by LPL providing new insight into the role of the LPL loop in lipid-substrate interactions. We propose that the interaction between the lipoprotein substrates and the amphipathic helices within this loop may in part determine lipase substrate specificity. | lld:pubmed |
pubmed-article:1460010 | pubmed:language | eng | lld:pubmed |
pubmed-article:1460010 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:1460010 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:1460010 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:1460010 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:1460010 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:1460010 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:1460010 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:1460010 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:1460010 | pubmed:month | Dec | lld:pubmed |
pubmed-article:1460010 | pubmed:issn | 0021-9258 | lld:pubmed |
pubmed-article:1460010 | pubmed:author | pubmed-author:BrewerH BHBJr | lld:pubmed |
pubmed-article:1460010 | pubmed:author | pubmed-author:Santamarina-F... | lld:pubmed |
pubmed-article:1460010 | pubmed:author | pubmed-author:TalbotN TNT | lld:pubmed |
pubmed-article:1460010 | pubmed:author | pubmed-author:DichekH LHL | lld:pubmed |
pubmed-article:1460010 | pubmed:author | pubmed-author:DugiK AKA | lld:pubmed |
pubmed-article:1460010 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:1460010 | pubmed:day | 15 | lld:pubmed |
pubmed-article:1460010 | pubmed:volume | 267 | lld:pubmed |
pubmed-article:1460010 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:1460010 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:1460010 | pubmed:pagination | 25086-91 | lld:pubmed |
pubmed-article:1460010 | pubmed:dateRevised | 2006-11-15 | lld:pubmed |
pubmed-article:1460010 | pubmed:meshHeading | pubmed-meshheading:1460010-... | lld:pubmed |
pubmed-article:1460010 | pubmed:meshHeading | pubmed-meshheading:1460010-... | lld:pubmed |
pubmed-article:1460010 | pubmed:meshHeading | pubmed-meshheading:1460010-... | lld:pubmed |
pubmed-article:1460010 | pubmed:meshHeading | pubmed-meshheading:1460010-... | lld:pubmed |
pubmed-article:1460010 | pubmed:meshHeading | pubmed-meshheading:1460010-... | lld:pubmed |
pubmed-article:1460010 | pubmed:meshHeading | pubmed-meshheading:1460010-... | lld:pubmed |
pubmed-article:1460010 | pubmed:meshHeading | pubmed-meshheading:1460010-... | lld:pubmed |
pubmed-article:1460010 | pubmed:meshHeading | pubmed-meshheading:1460010-... | lld:pubmed |
pubmed-article:1460010 | pubmed:meshHeading | pubmed-meshheading:1460010-... | lld:pubmed |
pubmed-article:1460010 | pubmed:meshHeading | pubmed-meshheading:1460010-... | lld:pubmed |
pubmed-article:1460010 | pubmed:meshHeading | pubmed-meshheading:1460010-... | lld:pubmed |
pubmed-article:1460010 | pubmed:meshHeading | pubmed-meshheading:1460010-... | lld:pubmed |
pubmed-article:1460010 | pubmed:meshHeading | pubmed-meshheading:1460010-... | lld:pubmed |
pubmed-article:1460010 | pubmed:meshHeading | pubmed-meshheading:1460010-... | lld:pubmed |
pubmed-article:1460010 | pubmed:meshHeading | pubmed-meshheading:1460010-... | lld:pubmed |
pubmed-article:1460010 | pubmed:meshHeading | pubmed-meshheading:1460010-... | lld:pubmed |
pubmed-article:1460010 | pubmed:meshHeading | pubmed-meshheading:1460010-... | lld:pubmed |
pubmed-article:1460010 | pubmed:meshHeading | pubmed-meshheading:1460010-... | lld:pubmed |
pubmed-article:1460010 | pubmed:meshHeading | pubmed-meshheading:1460010-... | lld:pubmed |
pubmed-article:1460010 | pubmed:year | 1992 | lld:pubmed |
pubmed-article:1460010 | pubmed:articleTitle | Human lipoprotein lipase: the loop covering the catalytic site is essential for interaction with lipid substrates. | lld:pubmed |
pubmed-article:1460010 | pubmed:affiliation | Molecular Disease Branch, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892. | lld:pubmed |
pubmed-article:1460010 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:1460010 | pubmed:publicationType | Comparative Study | lld:pubmed |
pubmed-article:1460010 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:1460010 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:1460010 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:1460010 | lld:pubmed |