pubmed-article:12918959 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:12918959 | lifeskim:mentions | umls-concept:C0237868 | lld:lifeskim |
pubmed-article:12918959 | lifeskim:mentions | umls-concept:C1533685 | lld:lifeskim |
pubmed-article:12918959 | lifeskim:mentions | umls-concept:C0443354 | lld:lifeskim |
pubmed-article:12918959 | lifeskim:mentions | umls-concept:C1257867 | lld:lifeskim |
pubmed-article:12918959 | lifeskim:mentions | umls-concept:C0003737 | lld:lifeskim |
pubmed-article:12918959 | lifeskim:mentions | umls-concept:C1510941 | lld:lifeskim |
pubmed-article:12918959 | pubmed:issue | 10 | lld:pubmed |
pubmed-article:12918959 | pubmed:dateCreated | 2003-8-15 | lld:pubmed |
pubmed-article:12918959 | pubmed:abstractText | An electrokinetic injection technique is described which uses a nuclear track-etched nanocapillary array to inject sample plugs from one layer of a microfluidic device into another vertically separated layer for electrophoretic separations. Gated injection protocols for analyte separations, reported here, establish nanocapillary array interconnects as a route to multilevel microfluidic analytical designs. The hybrid nanofluidic/microfluidic gated injection protocol allows sample preparation and separation to be implemented in separate horizontal planes, thereby achieving multilayer integration. Repeated injections and separations of FITC-labeled arginine and tryptophan, using 200-nm pore-diameter capillary array injectors in place of traditional cross injectors are used to demonstrate gated injection with a bias configuration that uses relay switching of a single high-voltage source. Injection times as rapid as 0.3 s along with separation reproducibilities as low as 1% for FITC-labeled arginine exemplify the capability for fast, serial separations and analyses. Impedance analysis of the micro-/nanofluidic network is used to gain further insight into the mechanism by which this actively controlled nanofluidic-interconnect injection method works. Gated sample introduction via a nanocapillary array interconnect allows the injection and separation protocols to be optimized independently, thus realizing the versatility needed for real-world implementation of rapid, serial microchip analyses. | lld:pubmed |
pubmed-article:12918959 | pubmed:language | eng | lld:pubmed |
pubmed-article:12918959 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:12918959 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:12918959 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:12918959 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:12918959 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:12918959 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:12918959 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:12918959 | pubmed:month | May | lld:pubmed |
pubmed-article:12918959 | pubmed:issn | 0003-2700 | lld:pubmed |
pubmed-article:12918959 | pubmed:author | pubmed-author:SweedlerJonat... | lld:pubmed |
pubmed-article:12918959 | pubmed:author | pubmed-author:CannonDonald... | lld:pubmed |
pubmed-article:12918959 | pubmed:author | pubmed-author:KuoTzu-ChiTC | lld:pubmed |
pubmed-article:12918959 | pubmed:author | pubmed-author:BohnPaul WPW | lld:pubmed |
pubmed-article:12918959 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:12918959 | pubmed:day | 15 | lld:pubmed |
pubmed-article:12918959 | pubmed:volume | 75 | lld:pubmed |
pubmed-article:12918959 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:12918959 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:12918959 | pubmed:pagination | 2224-30 | lld:pubmed |
pubmed-article:12918959 | pubmed:dateRevised | 2006-11-15 | lld:pubmed |
pubmed-article:12918959 | pubmed:meshHeading | pubmed-meshheading:12918959... | lld:pubmed |
pubmed-article:12918959 | pubmed:meshHeading | pubmed-meshheading:12918959... | lld:pubmed |
pubmed-article:12918959 | pubmed:meshHeading | pubmed-meshheading:12918959... | lld:pubmed |
pubmed-article:12918959 | pubmed:meshHeading | pubmed-meshheading:12918959... | lld:pubmed |
pubmed-article:12918959 | pubmed:meshHeading | pubmed-meshheading:12918959... | lld:pubmed |
pubmed-article:12918959 | pubmed:meshHeading | pubmed-meshheading:12918959... | lld:pubmed |
pubmed-article:12918959 | pubmed:meshHeading | pubmed-meshheading:12918959... | lld:pubmed |
pubmed-article:12918959 | pubmed:meshHeading | pubmed-meshheading:12918959... | lld:pubmed |
pubmed-article:12918959 | pubmed:year | 2003 | lld:pubmed |
pubmed-article:12918959 | pubmed:articleTitle | Nanocapillary array interconnects for gated analyte injections and electrophoretic separations in multilayer microfluidic architectures. | lld:pubmed |
pubmed-article:12918959 | pubmed:affiliation | Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA. | lld:pubmed |
pubmed-article:12918959 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:12918959 | pubmed:publicationType | Research Support, U.S. Gov't, Non-P.H.S. | lld:pubmed |
pubmed-article:12918959 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:12918959 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:12918959 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:12918959 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:12918959 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:12918959 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:12918959 | lld:pubmed |