Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:12862381rdf:typepubmed:Citationlld:pubmed
pubmed-article:12862381lifeskim:mentionsumls-concept:C0439849lld:lifeskim
pubmed-article:12862381lifeskim:mentionsumls-concept:C0333117lld:lifeskim
pubmed-article:12862381lifeskim:mentionsumls-concept:C1521991lld:lifeskim
pubmed-article:12862381lifeskim:mentionsumls-concept:C0684321lld:lifeskim
pubmed-article:12862381lifeskim:mentionsumls-concept:C0008555lld:lifeskim
pubmed-article:12862381lifeskim:mentionsumls-concept:C0870071lld:lifeskim
pubmed-article:12862381lifeskim:mentionsumls-concept:C0392762lld:lifeskim
pubmed-article:12862381lifeskim:mentionsumls-concept:C0282354lld:lifeskim
pubmed-article:12862381lifeskim:mentionsumls-concept:C1637833lld:lifeskim
pubmed-article:12862381pubmed:issue1-2lld:pubmed
pubmed-article:12862381pubmed:dateCreated2003-7-16lld:pubmed
pubmed-article:12862381pubmed:abstractTextThe relationship between retention indices and molecular descriptors of alkanes is established by two-step multivariate adaptive regression splines (TMARS). TMARS combines linear regression with multivariate adaptive regression splines (MARS). It is demonstrated for the present data set that using linear regression or MARS modeling alone causes lack of fit. TMARS avoids lack of fit and appreciably improves the prediction ability for the model. The use of this combined approach permits the development of additional understanding of the adaptive nature in MARS modeling.lld:pubmed
pubmed-article:12862381pubmed:languageenglld:pubmed
pubmed-article:12862381pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:12862381pubmed:citationSubsetIMlld:pubmed
pubmed-article:12862381pubmed:statusMEDLINElld:pubmed
pubmed-article:12862381pubmed:monthMaylld:pubmed
pubmed-article:12862381pubmed:issn0021-9673lld:pubmed
pubmed-article:12862381pubmed:authorpubmed-author:MassartD LDLlld:pubmed
pubmed-article:12862381pubmed:authorpubmed-author:LiangYi-ZengY...lld:pubmed
pubmed-article:12862381pubmed:authorpubmed-author:FangKai-TaiKTlld:pubmed
pubmed-article:12862381pubmed:authorpubmed-author:XuQing-SongQSlld:pubmed
pubmed-article:12862381pubmed:issnTypePrintlld:pubmed
pubmed-article:12862381pubmed:day23lld:pubmed
pubmed-article:12862381pubmed:volume998lld:pubmed
pubmed-article:12862381pubmed:ownerNLMlld:pubmed
pubmed-article:12862381pubmed:authorsCompleteYlld:pubmed
pubmed-article:12862381pubmed:pagination155-67lld:pubmed
pubmed-article:12862381pubmed:dateRevised2009-1-15lld:pubmed
pubmed-article:12862381pubmed:meshHeadingpubmed-meshheading:12862381...lld:pubmed
pubmed-article:12862381pubmed:meshHeadingpubmed-meshheading:12862381...lld:pubmed
pubmed-article:12862381pubmed:meshHeadingpubmed-meshheading:12862381...lld:pubmed
pubmed-article:12862381pubmed:year2003lld:pubmed
pubmed-article:12862381pubmed:articleTitleTwo-step multivariate adaptive regression splines for modeling a quantitative relationship between gas chromatography retention indices and molecular descriptors.lld:pubmed
pubmed-article:12862381pubmed:affiliationChemoAC, FABI, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.lld:pubmed
pubmed-article:12862381pubmed:publicationTypeJournal Articlelld:pubmed