Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:11278840rdf:typepubmed:Citationlld:pubmed
pubmed-article:11278840lifeskim:mentionsumls-concept:C0036025lld:lifeskim
pubmed-article:11278840lifeskim:mentionsumls-concept:C0007603lld:lifeskim
pubmed-article:11278840lifeskim:mentionsumls-concept:C0441635lld:lifeskim
pubmed-article:11278840lifeskim:mentionsumls-concept:C0001473lld:lifeskim
pubmed-article:11278840lifeskim:mentionsumls-concept:C1947953lld:lifeskim
pubmed-article:11278840lifeskim:mentionsumls-concept:C0014406lld:lifeskim
pubmed-article:11278840lifeskim:mentionsumls-concept:C0205681lld:lifeskim
pubmed-article:11278840lifeskim:mentionsumls-concept:C0600499lld:lifeskim
pubmed-article:11278840lifeskim:mentionsumls-concept:C2700372lld:lifeskim
pubmed-article:11278840pubmed:issue19lld:pubmed
pubmed-article:11278840pubmed:dateCreated2001-5-7lld:pubmed
pubmed-article:11278840pubmed:abstractTextThe stalk segments of P-type ion-translocating enzymes are presumed to play important roles in energy coupling. In this work, stalk segments S4 and S5 of the yeast H(+)-ATPase were examined for helical character, optimal length, and segment orientation by a combination of proline substitution, insertion/deletion mutagenesis, and second-site suppressor analyses. The substitution of various residues for helix-disrupting proline in both S4 (L353P,L353G; A354P; and G371P) and S5 (D676P and I684P) resulted in highly defective or inactive enzymes supporting the importance of helical character and/or the maintenance of essential interactions. The contiguous helical nature of transmembrane segment M5 and stalk element S5 was explored and found to be favorable, although not essential. The deletion or addition of one or more amino acids at positions Ala(354) in S4 and Asp(676) in S5, which were intended to either rotate helical faces or extend/reduce the length of helical segments, resulted in enzyme destabilization that abolished most enzyme assembly. Second-site suppressor mutations were obtained to primary site mutations G371A (S4) and D676G (S5) and were analyzed with a molecular structure model of the H(+)-ATPase. Primary site mutations were predicted to alter the site of phosphorylation either directly or indirectly. The suppressor mutations either directly changed packing around the primary site or altered the environment of the site of phosphorylation. Overall, these data support the view that stalk segments S4 and S5 of the H(+)-ATPase are helical elements that are optimized for length and interactions with other stalk elements and can influence the phosphorylation domain.lld:pubmed
pubmed-article:11278840pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:11278840pubmed:languageenglld:pubmed
pubmed-article:11278840pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:11278840pubmed:citationSubsetIMlld:pubmed
pubmed-article:11278840pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:11278840pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:11278840pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:11278840pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:11278840pubmed:statusMEDLINElld:pubmed
pubmed-article:11278840pubmed:monthMaylld:pubmed
pubmed-article:11278840pubmed:issn0021-9258lld:pubmed
pubmed-article:11278840pubmed:authorpubmed-author:PerlinD SDSlld:pubmed
pubmed-article:11278840pubmed:authorpubmed-author:SoteropoulosP...lld:pubmed
pubmed-article:11278840pubmed:authorpubmed-author:ValiakhmetovA...lld:pubmed
pubmed-article:11278840pubmed:authorpubmed-author:KashiwazakiRRlld:pubmed
pubmed-article:11278840pubmed:issnTypePrintlld:pubmed
pubmed-article:11278840pubmed:day11lld:pubmed
pubmed-article:11278840pubmed:volume276lld:pubmed
pubmed-article:11278840pubmed:ownerNLMlld:pubmed
pubmed-article:11278840pubmed:authorsCompleteYlld:pubmed
pubmed-article:11278840pubmed:pagination16265-70lld:pubmed
pubmed-article:11278840pubmed:dateRevised2007-11-14lld:pubmed
pubmed-article:11278840pubmed:meshHeadingpubmed-meshheading:11278840...lld:pubmed
pubmed-article:11278840pubmed:meshHeadingpubmed-meshheading:11278840...lld:pubmed
pubmed-article:11278840pubmed:meshHeadingpubmed-meshheading:11278840...lld:pubmed
pubmed-article:11278840pubmed:meshHeadingpubmed-meshheading:11278840...lld:pubmed
pubmed-article:11278840pubmed:meshHeadingpubmed-meshheading:11278840...lld:pubmed
pubmed-article:11278840pubmed:meshHeadingpubmed-meshheading:11278840...lld:pubmed
pubmed-article:11278840pubmed:meshHeadingpubmed-meshheading:11278840...lld:pubmed
pubmed-article:11278840pubmed:meshHeadingpubmed-meshheading:11278840...lld:pubmed
pubmed-article:11278840pubmed:meshHeadingpubmed-meshheading:11278840...lld:pubmed
pubmed-article:11278840pubmed:meshHeadingpubmed-meshheading:11278840...lld:pubmed
pubmed-article:11278840pubmed:meshHeadingpubmed-meshheading:11278840...lld:pubmed
pubmed-article:11278840pubmed:meshHeadingpubmed-meshheading:11278840...lld:pubmed
pubmed-article:11278840pubmed:meshHeadingpubmed-meshheading:11278840...lld:pubmed
pubmed-article:11278840pubmed:meshHeadingpubmed-meshheading:11278840...lld:pubmed
pubmed-article:11278840pubmed:year2001lld:pubmed
pubmed-article:11278840pubmed:articleTitleHelical stalk segments S4 and S5 of the plasma membrane H+-ATPase from Saccharomyces cerevisiae are optimized to impact catalytic site environment.lld:pubmed
pubmed-article:11278840pubmed:affiliationPublic Health Research Institute, New York, New York 10016, USA.lld:pubmed
pubmed-article:11278840pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:11278840pubmed:publicationTypeResearch Support, U.S. Gov't, P.H.S.lld:pubmed