pubmed-article:10743606 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:10743606 | lifeskim:mentions | umls-concept:C0013227 | lld:lifeskim |
pubmed-article:10743606 | lifeskim:mentions | umls-concept:C0017952 | lld:lifeskim |
pubmed-article:10743606 | lifeskim:mentions | umls-concept:C0332161 | lld:lifeskim |
pubmed-article:10743606 | lifeskim:mentions | umls-concept:C1513158 | lld:lifeskim |
pubmed-article:10743606 | lifeskim:mentions | umls-concept:C0936012 | lld:lifeskim |
pubmed-article:10743606 | lifeskim:mentions | umls-concept:C0449445 | lld:lifeskim |
pubmed-article:10743606 | lifeskim:mentions | umls-concept:C1280519 | lld:lifeskim |
pubmed-article:10743606 | pubmed:issue | 1 | lld:pubmed |
pubmed-article:10743606 | pubmed:dateCreated | 2000-5-10 | lld:pubmed |
pubmed-article:10743606 | pubmed:abstractText | Glycolysis is the only ATP-generating process in bloodstream form trypanosomes and is therefore a promising drug target. Inhibitors which decrease significantly the glycolytic flux will kill the parasites. Both computer simulation and experimental studies of glycolysis in bloodstream form Trypanosoma brucei indicated that the control of the glycolytic flux is shared by several steps in the pathway. The results of these analyses provide quantitative information about the prospects of decreasing the flux by inhibition of any individual enzyme. The plasma membrane glucose transporter appears the most promising target from this perspective, followed by aldolase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase and glycerol-3-phosphate dehydrogenase. Non-competitive or irreversible inhibitors would be most effective, but it is argued that potent competitive inhibitors can be suitable, provided that the concentration of the competing substrate cannot increase unrestrictedly. Such is the case for inhibitors that compete with coenzymes or with blood glucose. | lld:pubmed |
pubmed-article:10743606 | pubmed:language | eng | lld:pubmed |
pubmed-article:10743606 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10743606 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:10743606 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10743606 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10743606 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10743606 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10743606 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10743606 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10743606 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:10743606 | pubmed:month | Feb | lld:pubmed |
pubmed-article:10743606 | pubmed:issn | 0166-6851 | lld:pubmed |
pubmed-article:10743606 | pubmed:author | pubmed-author:WesterhoffH... | lld:pubmed |
pubmed-article:10743606 | pubmed:author | pubmed-author:MichelsP APA | lld:pubmed |
pubmed-article:10743606 | pubmed:author | pubmed-author:OpperdoesF... | lld:pubmed |
pubmed-article:10743606 | pubmed:author | pubmed-author:BakkerB MBM | lld:pubmed |
pubmed-article:10743606 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:10743606 | pubmed:day | 25 | lld:pubmed |
pubmed-article:10743606 | pubmed:volume | 106 | lld:pubmed |
pubmed-article:10743606 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:10743606 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:10743606 | pubmed:pagination | 1-10 | lld:pubmed |
pubmed-article:10743606 | pubmed:dateRevised | 2006-11-15 | lld:pubmed |
pubmed-article:10743606 | pubmed:meshHeading | pubmed-meshheading:10743606... | lld:pubmed |
pubmed-article:10743606 | pubmed:meshHeading | pubmed-meshheading:10743606... | lld:pubmed |
pubmed-article:10743606 | pubmed:meshHeading | pubmed-meshheading:10743606... | lld:pubmed |
pubmed-article:10743606 | pubmed:meshHeading | pubmed-meshheading:10743606... | lld:pubmed |
pubmed-article:10743606 | pubmed:meshHeading | pubmed-meshheading:10743606... | lld:pubmed |
pubmed-article:10743606 | pubmed:meshHeading | pubmed-meshheading:10743606... | lld:pubmed |
pubmed-article:10743606 | pubmed:meshHeading | pubmed-meshheading:10743606... | lld:pubmed |
pubmed-article:10743606 | pubmed:meshHeading | pubmed-meshheading:10743606... | lld:pubmed |
pubmed-article:10743606 | pubmed:meshHeading | pubmed-meshheading:10743606... | lld:pubmed |
pubmed-article:10743606 | pubmed:year | 2000 | lld:pubmed |
pubmed-article:10743606 | pubmed:articleTitle | Metabolic control analysis of glycolysis in trypanosomes as an approach to improve selectivity and effectiveness of drugs. | lld:pubmed |
pubmed-article:10743606 | pubmed:affiliation | Kluyver Institute of Biotechnology, Delft University of Technology, The Netherlands. | lld:pubmed |
pubmed-article:10743606 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:10743606 | pubmed:publicationType | Review | lld:pubmed |
pubmed-article:10743606 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:10743606 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:10743606 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:10743606 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:10743606 | lld:pubmed |