Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:10613111rdf:typepubmed:Citationlld:pubmed
pubmed-article:10613111lifeskim:mentionsumls-concept:C0150775lld:lifeskim
pubmed-article:10613111lifeskim:mentionsumls-concept:C0869014lld:lifeskim
pubmed-article:10613111lifeskim:mentionsumls-concept:C0206031lld:lifeskim
pubmed-article:10613111lifeskim:mentionsumls-concept:C0206032lld:lifeskim
pubmed-article:10613111pubmed:dateCreated2000-2-9lld:pubmed
pubmed-article:10613111pubmed:abstractTextThe research described here builds on our previous work by generalizing the univariate models described there to models for multivariate relations. This family, labelled p*, generalizes the Markov random graphs of Frank and Strauss, which were further developed by them and others, building on Besag's ideas on estimation. These models were first used to model random variables embedded in lattices by Ising, and have been quite common in the study of spatial data. Here, they are applied to the statistical analysis of multigraphs, in general, and the analysis of multivariate social networks, in particular. In this paper, we show how to formulate models for multivariate social networks by considering a range of theoretical claims about social structure. We illustrate the models by developing structural models for several multivariate networks.lld:pubmed
pubmed-article:10613111pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10613111pubmed:languageenglld:pubmed
pubmed-article:10613111pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10613111pubmed:citationSubsetIMlld:pubmed
pubmed-article:10613111pubmed:statusMEDLINElld:pubmed
pubmed-article:10613111pubmed:monthNovlld:pubmed
pubmed-article:10613111pubmed:issn0007-1102lld:pubmed
pubmed-article:10613111pubmed:authorpubmed-author:WassermanSSlld:pubmed
pubmed-article:10613111pubmed:authorpubmed-author:PattisonPPlld:pubmed
pubmed-article:10613111pubmed:issnTypePrintlld:pubmed
pubmed-article:10613111pubmed:volume52 ( Pt 2)lld:pubmed
pubmed-article:10613111pubmed:ownerNLMlld:pubmed
pubmed-article:10613111pubmed:authorsCompleteYlld:pubmed
pubmed-article:10613111pubmed:pagination169-93lld:pubmed
pubmed-article:10613111pubmed:dateRevised2009-11-11lld:pubmed
pubmed-article:10613111pubmed:meshHeadingpubmed-meshheading:10613111...lld:pubmed
pubmed-article:10613111pubmed:meshHeadingpubmed-meshheading:10613111...lld:pubmed
pubmed-article:10613111pubmed:meshHeadingpubmed-meshheading:10613111...lld:pubmed
pubmed-article:10613111pubmed:meshHeadingpubmed-meshheading:10613111...lld:pubmed
pubmed-article:10613111pubmed:meshHeadingpubmed-meshheading:10613111...lld:pubmed
pubmed-article:10613111pubmed:year1999lld:pubmed
pubmed-article:10613111pubmed:articleTitleLogit models and logistic regressions for social networks: II. Multivariate relations.lld:pubmed
pubmed-article:10613111pubmed:affiliationDepartment of Psychology, University of Melbourne, Parkville, Victoria, Australia. pattision@psych.unimelb.edu.aulld:pubmed
pubmed-article:10613111pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:10613111pubmed:publicationTypeResearch Support, U.S. Gov't, P.H.S.lld:pubmed
pubmed-article:10613111pubmed:publicationTypeResearch Support, U.S. Gov't, Non-P.H.S.lld:pubmed
pubmed-article:10613111pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:10613111lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:10613111lld:pubmed