pubmed-article:10551838 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:10551838 | lifeskim:mentions | umls-concept:C0205245 | lld:lifeskim |
pubmed-article:10551838 | lifeskim:mentions | umls-concept:C0017262 | lld:lifeskim |
pubmed-article:10551838 | lifeskim:mentions | umls-concept:C0009017 | lld:lifeskim |
pubmed-article:10551838 | lifeskim:mentions | umls-concept:C0376315 | lld:lifeskim |
pubmed-article:10551838 | lifeskim:mentions | umls-concept:C2911684 | lld:lifeskim |
pubmed-article:10551838 | lifeskim:mentions | umls-concept:C1433696 | lld:lifeskim |
pubmed-article:10551838 | lifeskim:mentions | umls-concept:C0185117 | lld:lifeskim |
pubmed-article:10551838 | pubmed:issue | 46 | lld:pubmed |
pubmed-article:10551838 | pubmed:dateCreated | 2000-1-3 | lld:pubmed |
pubmed-article:10551838 | pubmed:databankReference | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10551838 | pubmed:databankReference | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10551838 | pubmed:abstractText | We have isolated and sequenced human cDNA and mouse genomic DNA clones encoding N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase (phosphodiester alpha-GlcNAcase) which catalyzes the second step in the synthesis of the mannose 6-phosphate recognition signal on lysosomal enzymes. The gene is organized into 10 exons. The protein sequence encoded by the clones shows 80% identity between human and mouse phosphodiester alpha-GlcNAcase and no homology to other known proteins. It predicts a type I membrane-spanning glycoprotein of 514 amino acids containing a 24-amino acid signal sequence, a luminal domain of 422 residues with six potential N-linked glycosylation sites, a single 27-residue transmembrane region, and a 41-residue cytoplasmic tail that contains both a tyrosine-based and an NPF internalization motif. Human brain expressed sequence tags lack a 102-base pair region present in human liver cDNA that corresponds to exon 8 in the genomic DNA and probably arises via alternative splicing. COS cells transfected with the human cDNA expressed 50-100-fold increases in phosphodiester alpha-GlcNAcase activity proving that the cDNA encodes the subunits of the tetrameric enzyme. Transfection with cDNA lacking the 102-base pair region also gave active enzyme. The complete genomic sequence of human phosphodiester alpha-GlcNAcase was recently deposited in the data base. It showed that our cDNA clone was missing only the 5'-untranslated region and initiator methionine and revealed that the human genomic DNA has the same exon organization as the mouse gene. | lld:pubmed |
pubmed-article:10551838 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10551838 | pubmed:language | eng | lld:pubmed |
pubmed-article:10551838 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10551838 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:10551838 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10551838 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10551838 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10551838 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10551838 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:10551838 | pubmed:month | Nov | lld:pubmed |
pubmed-article:10551838 | pubmed:issn | 0021-9258 | lld:pubmed |
pubmed-article:10551838 | pubmed:author | pubmed-author:BrewerKK | lld:pubmed |
pubmed-article:10551838 | pubmed:author | pubmed-author:KornfeldRR | lld:pubmed |
pubmed-article:10551838 | pubmed:author | pubmed-author:LongJ TJT | lld:pubmed |
pubmed-article:10551838 | pubmed:author | pubmed-author:BayGG | lld:pubmed |
pubmed-article:10551838 | pubmed:author | pubmed-author:CanfieldWW | lld:pubmed |
pubmed-article:10551838 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:10551838 | pubmed:day | 12 | lld:pubmed |
pubmed-article:10551838 | pubmed:volume | 274 | lld:pubmed |
pubmed-article:10551838 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:10551838 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:10551838 | pubmed:pagination | 32778-85 | lld:pubmed |
pubmed-article:10551838 | pubmed:dateRevised | 2007-11-14 | lld:pubmed |
pubmed-article:10551838 | pubmed:meshHeading | pubmed-meshheading:10551838... | lld:pubmed |
pubmed-article:10551838 | pubmed:meshHeading | pubmed-meshheading:10551838... | lld:pubmed |
pubmed-article:10551838 | pubmed:meshHeading | pubmed-meshheading:10551838... | lld:pubmed |
pubmed-article:10551838 | pubmed:meshHeading | pubmed-meshheading:10551838... | lld:pubmed |
pubmed-article:10551838 | pubmed:meshHeading | pubmed-meshheading:10551838... | lld:pubmed |
pubmed-article:10551838 | pubmed:meshHeading | pubmed-meshheading:10551838... | lld:pubmed |
pubmed-article:10551838 | pubmed:meshHeading | pubmed-meshheading:10551838... | lld:pubmed |
pubmed-article:10551838 | pubmed:meshHeading | pubmed-meshheading:10551838... | lld:pubmed |
pubmed-article:10551838 | pubmed:meshHeading | pubmed-meshheading:10551838... | lld:pubmed |
pubmed-article:10551838 | pubmed:meshHeading | pubmed-meshheading:10551838... | lld:pubmed |
pubmed-article:10551838 | pubmed:meshHeading | pubmed-meshheading:10551838... | lld:pubmed |
pubmed-article:10551838 | pubmed:meshHeading | pubmed-meshheading:10551838... | lld:pubmed |
pubmed-article:10551838 | pubmed:meshHeading | pubmed-meshheading:10551838... | lld:pubmed |
pubmed-article:10551838 | pubmed:meshHeading | pubmed-meshheading:10551838... | lld:pubmed |
pubmed-article:10551838 | pubmed:meshHeading | pubmed-meshheading:10551838... | lld:pubmed |
pubmed-article:10551838 | pubmed:meshHeading | pubmed-meshheading:10551838... | lld:pubmed |
pubmed-article:10551838 | pubmed:meshHeading | pubmed-meshheading:10551838... | lld:pubmed |
pubmed-article:10551838 | pubmed:year | 1999 | lld:pubmed |
pubmed-article:10551838 | pubmed:articleTitle | Molecular cloning and functional expression of two splice forms of human N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase. | lld:pubmed |
pubmed-article:10551838 | pubmed:affiliation | Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA. | lld:pubmed |
pubmed-article:10551838 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:10551838 | pubmed:publicationType | Research Support, U.S. Gov't, P.H.S. | lld:pubmed |
pubmed-article:10551838 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |
http://bio2rdf.org/pubmed:1... | skos:relatedMatch | pubmed-article:10551838 | lld:mappings |
literatureCitation:4015_105... | literatureCitation:pubmed | pubmed-article:10551838 | lld:drugbank |
entrez-gene:51172 | entrezgene:pubmed | pubmed-article:10551838 | lld:entrezgene |
entrez-gene:27426 | entrezgene:pubmed | pubmed-article:10551838 | lld:entrezgene |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:10551838 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:10551838 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:10551838 | lld:pubmed |