Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:10495118rdf:typepubmed:Citationlld:pubmed
pubmed-article:10495118lifeskim:mentionsumls-concept:C0598941lld:lifeskim
pubmed-article:10495118lifeskim:mentionsumls-concept:C0273115lld:lifeskim
pubmed-article:10495118lifeskim:mentionsumls-concept:C0231220lld:lifeskim
pubmed-article:10495118lifeskim:mentionsumls-concept:C0681842lld:lifeskim
pubmed-article:10495118pubmed:issue9lld:pubmed
pubmed-article:10495118pubmed:dateCreated1999-10-19lld:pubmed
pubmed-article:10495118pubmed:abstractTextA nonlinear neural network that simultaneously uses pre-radiotherapy (RT) biological and physical data was developed to predict symptomatic lung injury. The input data were pre-RT pulmonary function, three-dimensional treatment plan doses and demographics. The output was a single value between 0 (asymptomatic) and 1 (symptomatic) to predict the likelihood that a particular patient would become symptomatic. The network was trained on data from 97 patients for 400 iterations with the goal to minimize the mean-squared error. Statistical analysis was performed on the resulting network to determine the model's accuracy. Results from the neural network were compared with those given by traditional linear discriminate analysis and the dose-volume histogram reduction (DVHR) scheme of Kutcher. Receiver-operator characteristic (ROC) analysis was performed on the resulting network which had Az = 0.833 +/- 0.04. (Az is the area under the ROC curve.) Linear discriminate multivariate analysis yielded an Az = 0.813 +/- 0.06. The DVHR method had Az = 0.521 +/- 0.08. The network was also used to rank the significance of the input variables. Future studies will be conducted to improve network accuracy and to include functional imaging data.lld:pubmed
pubmed-article:10495118pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10495118pubmed:languageenglld:pubmed
pubmed-article:10495118pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:10495118pubmed:citationSubsetIMlld:pubmed
pubmed-article:10495118pubmed:statusMEDLINElld:pubmed
pubmed-article:10495118pubmed:monthSeplld:pubmed
pubmed-article:10495118pubmed:issn0031-9155lld:pubmed
pubmed-article:10495118pubmed:authorpubmed-author:AnscherM SMSlld:pubmed
pubmed-article:10495118pubmed:authorpubmed-author:MarksL BLBlld:pubmed
pubmed-article:10495118pubmed:authorpubmed-author:RoJ SJSlld:pubmed
pubmed-article:10495118pubmed:authorpubmed-author:BentelG CGClld:pubmed
pubmed-article:10495118pubmed:authorpubmed-author:SibleyG SGSlld:pubmed
pubmed-article:10495118pubmed:authorpubmed-author:MunleyM TMTlld:pubmed
pubmed-article:10495118pubmed:issnTypePrintlld:pubmed
pubmed-article:10495118pubmed:volume44lld:pubmed
pubmed-article:10495118pubmed:ownerNLMlld:pubmed
pubmed-article:10495118pubmed:authorsCompleteYlld:pubmed
pubmed-article:10495118pubmed:pagination2241-9lld:pubmed
pubmed-article:10495118pubmed:dateRevised2008-11-21lld:pubmed
pubmed-article:10495118pubmed:meshHeadingpubmed-meshheading:10495118...lld:pubmed
pubmed-article:10495118pubmed:meshHeadingpubmed-meshheading:10495118...lld:pubmed
pubmed-article:10495118pubmed:meshHeadingpubmed-meshheading:10495118...lld:pubmed
pubmed-article:10495118pubmed:meshHeadingpubmed-meshheading:10495118...lld:pubmed
pubmed-article:10495118pubmed:meshHeadingpubmed-meshheading:10495118...lld:pubmed
pubmed-article:10495118pubmed:meshHeadingpubmed-meshheading:10495118...lld:pubmed
pubmed-article:10495118pubmed:meshHeadingpubmed-meshheading:10495118...lld:pubmed
pubmed-article:10495118pubmed:meshHeadingpubmed-meshheading:10495118...lld:pubmed
pubmed-article:10495118pubmed:meshHeadingpubmed-meshheading:10495118...lld:pubmed
pubmed-article:10495118pubmed:meshHeadingpubmed-meshheading:10495118...lld:pubmed
pubmed-article:10495118pubmed:meshHeadingpubmed-meshheading:10495118...lld:pubmed
pubmed-article:10495118pubmed:meshHeadingpubmed-meshheading:10495118...lld:pubmed
pubmed-article:10495118pubmed:meshHeadingpubmed-meshheading:10495118...lld:pubmed
pubmed-article:10495118pubmed:meshHeadingpubmed-meshheading:10495118...lld:pubmed
pubmed-article:10495118pubmed:meshHeadingpubmed-meshheading:10495118...lld:pubmed
pubmed-article:10495118pubmed:meshHeadingpubmed-meshheading:10495118...lld:pubmed
pubmed-article:10495118pubmed:meshHeadingpubmed-meshheading:10495118...lld:pubmed
pubmed-article:10495118pubmed:meshHeadingpubmed-meshheading:10495118...lld:pubmed
pubmed-article:10495118pubmed:meshHeadingpubmed-meshheading:10495118...lld:pubmed
pubmed-article:10495118pubmed:meshHeadingpubmed-meshheading:10495118...lld:pubmed
pubmed-article:10495118pubmed:meshHeadingpubmed-meshheading:10495118...lld:pubmed
pubmed-article:10495118pubmed:year1999lld:pubmed
pubmed-article:10495118pubmed:articleTitleA neural network to predict symptomatic lung injury.lld:pubmed
pubmed-article:10495118pubmed:affiliationDepartment of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA. munley@radonc.duke.edulld:pubmed
pubmed-article:10495118pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:10495118pubmed:publicationTypeResearch Support, U.S. Gov't, P.H.S.lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:10495118lld:pubmed