Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:9878904rdf:typepubmed:Citationlld:pubmed
pubmed-article:9878904lifeskim:mentionsumls-concept:C0014507lld:lifeskim
pubmed-article:9878904lifeskim:mentionsumls-concept:C1521828lld:lifeskim
pubmed-article:9878904lifeskim:mentionsumls-concept:C0024779lld:lifeskim
pubmed-article:9878904lifeskim:mentionsumls-concept:C0449445lld:lifeskim
pubmed-article:9878904pubmed:issue4lld:pubmed
pubmed-article:9878904pubmed:dateCreated1999-4-1lld:pubmed
pubmed-article:9878904pubmed:abstractTextThis article presents statistical methods recently developed for the analysis of maps of disease rates when the geographic units have small populations at risk. They adopt the Bayesian approach and use intensive computational methods for estimating risk in each area. The objective of the methods is to separate the variability of rates due to differences between regions from the background risk due to pure random fluctuation. Risk estimates have a total mean quadratic error smaller than usual estimates. We apply these new methods to estimate infant mortality risk in the municipalities of the State of Minas Gerais in 1994.lld:pubmed
pubmed-article:9878904pubmed:languageporlld:pubmed
pubmed-article:9878904pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:9878904pubmed:citationSubsetIMlld:pubmed
pubmed-article:9878904pubmed:statusMEDLINElld:pubmed
pubmed-article:9878904pubmed:issn0102-311Xlld:pubmed
pubmed-article:9878904pubmed:authorpubmed-author:SakuraiEElld:pubmed
pubmed-article:9878904pubmed:authorpubmed-author:GuerraH LHLlld:pubmed
pubmed-article:9878904pubmed:authorpubmed-author:BarretoS MSMlld:pubmed
pubmed-article:9878904pubmed:authorpubmed-author:AssunçãoR MRMlld:pubmed
pubmed-article:9878904pubmed:issnTypePrintlld:pubmed
pubmed-article:9878904pubmed:volume14lld:pubmed
pubmed-article:9878904pubmed:ownerNLMlld:pubmed
pubmed-article:9878904pubmed:authorsCompleteYlld:pubmed
pubmed-article:9878904pubmed:pagination713-23lld:pubmed
pubmed-article:9878904pubmed:dateRevised2006-11-15lld:pubmed
pubmed-article:9878904pubmed:meshHeadingpubmed-meshheading:9878904-...lld:pubmed
pubmed-article:9878904pubmed:meshHeadingpubmed-meshheading:9878904-...lld:pubmed
pubmed-article:9878904pubmed:meshHeadingpubmed-meshheading:9878904-...lld:pubmed
pubmed-article:9878904pubmed:meshHeadingpubmed-meshheading:9878904-...lld:pubmed
pubmed-article:9878904pubmed:meshHeadingpubmed-meshheading:9878904-...lld:pubmed
pubmed-article:9878904pubmed:meshHeadingpubmed-meshheading:9878904-...lld:pubmed
pubmed-article:9878904pubmed:meshHeadingpubmed-meshheading:9878904-...lld:pubmed
pubmed-article:9878904pubmed:meshHeadingpubmed-meshheading:9878904-...lld:pubmed
pubmed-article:9878904pubmed:meshHeadingpubmed-meshheading:9878904-...lld:pubmed
pubmed-article:9878904pubmed:articleTitle[Maps of epidemiological rates: a Bayesian approach].lld:pubmed
pubmed-article:9878904pubmed:affiliationDepartamento de Estatística, Universidade Federal de Minas Gerais, Caixa Postal 702, Belo Horizonte, MG 30161-970, Brasil. assuncao@est.ufmg.brlld:pubmed
pubmed-article:9878904pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:9878904pubmed:publicationTypeComparative Studylld:pubmed
pubmed-article:9878904pubmed:publicationTypeEnglish Abstractlld:pubmed
pubmed-article:9878904pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed