pubmed-article:9862917 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:9862917 | lifeskim:mentions | umls-concept:C0205107 | lld:lifeskim |
pubmed-article:9862917 | lifeskim:mentions | umls-concept:C0205108 | lld:lifeskim |
pubmed-article:9862917 | lifeskim:mentions | umls-concept:C0598860 | lld:lifeskim |
pubmed-article:9862917 | lifeskim:mentions | umls-concept:C0549255 | lld:lifeskim |
pubmed-article:9862917 | lifeskim:mentions | umls-concept:C0237633 | lld:lifeskim |
pubmed-article:9862917 | lifeskim:mentions | umls-concept:C0015744 | lld:lifeskim |
pubmed-article:9862917 | lifeskim:mentions | umls-concept:C2911691 | lld:lifeskim |
pubmed-article:9862917 | lifeskim:mentions | umls-concept:C0021469 | lld:lifeskim |
pubmed-article:9862917 | pubmed:issue | 6 | lld:pubmed |
pubmed-article:9862917 | pubmed:dateCreated | 1999-2-10 | lld:pubmed |
pubmed-article:9862917 | pubmed:abstractText | Distal versus proximal inhibitory shaping of feedback excitation in the electrosensory lateral line lobe: implications for sensory filtering. J. Neurophysiol. 80: 3214-3232, 1998. The inhibition controlling the indirect descending feedback (parallel fibers originating from cerebellar granule cells in the eminentia posterior pars granularis) to electrosensory lateral line lobe (ELL) pyramidal cells was studied using intracellular recording techniques in vitro. Parallel fibers (PF) contact stellate cells and dendrites of ventral molecular layer (VML) GABAergic interneurons. Stellate cells provide local input to pyramidal cell distal dendrites, whereas VML cells contact their somata and proximal dendrites. Single-pulse stimulation of PF evoked graded excitatory postsynaptic potentials (EPSPs) that were blocked by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl--aspartate (NMDA) antagonists. The EPSPs peaked at 6.4 +/- 1.8 ms (mean +/- SE; n = 11) but took >50 ms to decay completely. Tetanic stimulation (100 ms, 100 Hz) produced a depolarizing wave with individual EPSPs superimposed. The absolute amplitude of the individual EPSPs decreased during the train. Spike rates, established by injected current, mostly were increased, but in some cells were decreased, by tetanic stimulation. Global application of a gamma-aminobutyric acid-A (GABAA) antagonist to the recorded cell's soma and apical dendritic region increased the EPSP peak and decay phase amplitudes. Tetanic stimulation always increased current-evoked spike rates after GABAA blockade during, and for several hundred milliseconds after, the stimulus. Application of a GABAB antagonist did not have any significant effects on the PF-evoked response. This, and the lack of any long hyperpolarizing inhibitory postsynaptic potentials, suggests that VML and stellate cell inhibition does not involve GABAB receptors. Focal GABAA antagonist applications to the dorsal molecular layer (DML) and pyramidal cell layer (PCL) had contrasting effects on PF-evoked EPSPs. DML GABAA blockade significantly increased the EPSP peak amplitude but not the decay phase of the EPSP, whereas PCL GABAA-blockade significantly increased the decay phase, but not the EPSP peak, amplitude. The order of antagonist application did not affect the outcome. On the basis of the known circuitry of the ELL, we conclude that the distal inhibition originated from GABAergic molecular layer stellate cells and the proximal inhibition originated from GABAergic cells of the ventral molecular layer (VML cells). Computer modeling of distal and proximal inhibition suggests that intrinsic differences in IPSP dynamics between the distal and proximal sites may be amplified by voltage-dependent NMDA receptor and persistent sodium currents. We propose that the different time courses of stellate cell and VML cell inhibition allows them to act as low- and high-pass filters respectively on indirect descending feedback to ELL pyramidal cells. | lld:pubmed |
pubmed-article:9862917 | pubmed:language | eng | lld:pubmed |
pubmed-article:9862917 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:9862917 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:9862917 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:9862917 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:9862917 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:9862917 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:9862917 | pubmed:month | Dec | lld:pubmed |
pubmed-article:9862917 | pubmed:issn | 0022-3077 | lld:pubmed |
pubmed-article:9862917 | pubmed:author | pubmed-author:MalerLL | lld:pubmed |
pubmed-article:9862917 | pubmed:author | pubmed-author:BermanN JNJ | lld:pubmed |
pubmed-article:9862917 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:9862917 | pubmed:volume | 80 | lld:pubmed |
pubmed-article:9862917 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:9862917 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:9862917 | pubmed:pagination | 3214-32 | lld:pubmed |
pubmed-article:9862917 | pubmed:dateRevised | 2006-11-15 | lld:pubmed |
pubmed-article:9862917 | pubmed:meshHeading | pubmed-meshheading:9862917-... | lld:pubmed |
pubmed-article:9862917 | pubmed:meshHeading | pubmed-meshheading:9862917-... | lld:pubmed |
pubmed-article:9862917 | pubmed:meshHeading | pubmed-meshheading:9862917-... | lld:pubmed |
pubmed-article:9862917 | pubmed:meshHeading | pubmed-meshheading:9862917-... | lld:pubmed |
pubmed-article:9862917 | pubmed:meshHeading | pubmed-meshheading:9862917-... | lld:pubmed |
pubmed-article:9862917 | pubmed:meshHeading | pubmed-meshheading:9862917-... | lld:pubmed |
pubmed-article:9862917 | pubmed:meshHeading | pubmed-meshheading:9862917-... | lld:pubmed |
pubmed-article:9862917 | pubmed:meshHeading | pubmed-meshheading:9862917-... | lld:pubmed |
pubmed-article:9862917 | pubmed:meshHeading | pubmed-meshheading:9862917-... | lld:pubmed |
pubmed-article:9862917 | pubmed:meshHeading | pubmed-meshheading:9862917-... | lld:pubmed |
pubmed-article:9862917 | pubmed:meshHeading | pubmed-meshheading:9862917-... | lld:pubmed |
pubmed-article:9862917 | pubmed:meshHeading | pubmed-meshheading:9862917-... | lld:pubmed |
pubmed-article:9862917 | pubmed:meshHeading | pubmed-meshheading:9862917-... | lld:pubmed |
pubmed-article:9862917 | pubmed:meshHeading | pubmed-meshheading:9862917-... | lld:pubmed |
pubmed-article:9862917 | pubmed:meshHeading | pubmed-meshheading:9862917-... | lld:pubmed |
pubmed-article:9862917 | pubmed:meshHeading | pubmed-meshheading:9862917-... | lld:pubmed |
pubmed-article:9862917 | pubmed:meshHeading | pubmed-meshheading:9862917-... | lld:pubmed |
pubmed-article:9862917 | pubmed:meshHeading | pubmed-meshheading:9862917-... | lld:pubmed |
pubmed-article:9862917 | pubmed:year | 1998 | lld:pubmed |
pubmed-article:9862917 | pubmed:articleTitle | Distal versus proximal inhibitory shaping of feedback excitation in the electrosensory lateral line lobe: implications for sensory filtering. | lld:pubmed |
pubmed-article:9862917 | pubmed:affiliation | Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada. | lld:pubmed |
pubmed-article:9862917 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:9862917 | pubmed:publicationType | In Vitro | lld:pubmed |
pubmed-article:9862917 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:9862917 | lld:pubmed |