Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:9510251rdf:typepubmed:Citationlld:pubmed
pubmed-article:9510251lifeskim:mentionsumls-concept:C0027882lld:lifeskim
pubmed-article:9510251lifeskim:mentionsumls-concept:C2587213lld:lifeskim
pubmed-article:9510251lifeskim:mentionsumls-concept:C0205171lld:lifeskim
pubmed-article:9510251lifeskim:mentionsumls-concept:C0205088lld:lifeskim
pubmed-article:9510251pubmed:issue6671lld:pubmed
pubmed-article:9510251pubmed:dateCreated1998-3-24lld:pubmed
pubmed-article:9510251pubmed:abstractTextThe regulation of synaptic efficacy is essential for the proper functioning of neural circuits. If synaptic gain is set too high or too low, cells are either activated inappropriately or remain silent. There is extra complexity because synapses are not static, but form, retract, expand, strengthen, and weaken throughout life. Homeostatic regulatory mechanisms that control synaptic efficacy presumably exist to ensure that neurons remain functional within a meaningful physiological range. One of the best defined systems for analysis of the mechanisms that regulate synaptic efficacy is the neuromuscular junction. It has been shown, in organisms ranging from insects to humans, that changes in synaptic efficacy are tightly coupled to changes in muscle size during development. It has been proposed that a signal from muscle to motor neuron maintains this coupling. Here we show, by genetically manipulating muscle innervation, that there are two independent mechanisms by which muscle regulates synaptic efficacy at the terminals of single motor neurons. Increased muscle innervation results in a compensatory, target-specific decrease in presynaptic transmitter release, implying a retrograde regulation of presynaptic release. Decreased muscle innervation results in a compensatory increase in quantal size.lld:pubmed
pubmed-article:9510251pubmed:languageenglld:pubmed
pubmed-article:9510251pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:9510251pubmed:citationSubsetIMlld:pubmed
pubmed-article:9510251pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:9510251pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:9510251pubmed:statusMEDLINElld:pubmed
pubmed-article:9510251pubmed:monthMarlld:pubmed
pubmed-article:9510251pubmed:issn0028-0836lld:pubmed
pubmed-article:9510251pubmed:authorpubmed-author:GoodmanC SCSlld:pubmed
pubmed-article:9510251pubmed:authorpubmed-author:DavisG WGWlld:pubmed
pubmed-article:9510251pubmed:issnTypePrintlld:pubmed
pubmed-article:9510251pubmed:day5lld:pubmed
pubmed-article:9510251pubmed:volume392lld:pubmed
pubmed-article:9510251pubmed:ownerNLMlld:pubmed
pubmed-article:9510251pubmed:authorsCompleteYlld:pubmed
pubmed-article:9510251pubmed:pagination82-6lld:pubmed
pubmed-article:9510251pubmed:dateRevised2006-11-15lld:pubmed
pubmed-article:9510251pubmed:meshHeadingpubmed-meshheading:9510251-...lld:pubmed
pubmed-article:9510251pubmed:meshHeadingpubmed-meshheading:9510251-...lld:pubmed
pubmed-article:9510251pubmed:meshHeadingpubmed-meshheading:9510251-...lld:pubmed
pubmed-article:9510251pubmed:meshHeadingpubmed-meshheading:9510251-...lld:pubmed
pubmed-article:9510251pubmed:meshHeadingpubmed-meshheading:9510251-...lld:pubmed
pubmed-article:9510251pubmed:meshHeadingpubmed-meshheading:9510251-...lld:pubmed
pubmed-article:9510251pubmed:meshHeadingpubmed-meshheading:9510251-...lld:pubmed
pubmed-article:9510251pubmed:meshHeadingpubmed-meshheading:9510251-...lld:pubmed
pubmed-article:9510251pubmed:year1998lld:pubmed
pubmed-article:9510251pubmed:articleTitleSynapse-specific control of synaptic efficacy at the terminals of a single neuron.lld:pubmed
pubmed-article:9510251pubmed:affiliationHoward Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA. gdavis@coreys.berkeley.edulld:pubmed
pubmed-article:9510251pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:9510251pubmed:publicationTypeResearch Support, U.S. Gov't, P.H.S.lld:pubmed
pubmed-article:9510251pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
entrez-gene:31364entrezgene:pubmedpubmed-article:9510251lld:entrezgene
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:9510251lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:9510251lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:9510251lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:9510251lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:9510251lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:9510251lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:9510251lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:9510251lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:9510251lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:9510251lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:9510251lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:9510251lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:9510251lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:9510251lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:9510251lld:pubmed