pubmed-article:9334194 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:9334194 | lifeskim:mentions | umls-concept:C0008377 | lld:lifeskim |
pubmed-article:9334194 | lifeskim:mentions | umls-concept:C0225336 | lld:lifeskim |
pubmed-article:9334194 | lifeskim:mentions | umls-concept:C0221102 | lld:lifeskim |
pubmed-article:9334194 | lifeskim:mentions | umls-concept:C0024432 | lld:lifeskim |
pubmed-article:9334194 | lifeskim:mentions | umls-concept:C0055530 | lld:lifeskim |
pubmed-article:9334194 | lifeskim:mentions | umls-concept:C1707455 | lld:lifeskim |
pubmed-article:9334194 | lifeskim:mentions | umls-concept:C0178587 | lld:lifeskim |
pubmed-article:9334194 | lifeskim:mentions | umls-concept:C2248593 | lld:lifeskim |
pubmed-article:9334194 | lifeskim:mentions | umls-concept:C0441712 | lld:lifeskim |
pubmed-article:9334194 | pubmed:issue | 42 | lld:pubmed |
pubmed-article:9334194 | pubmed:dateCreated | 1997-11-17 | lld:pubmed |
pubmed-article:9334194 | pubmed:abstractText | Cultured macrophages and endothelial cells have been reported to secrete 27-oxygenated metabolites of cholesterol. This mechanism was compared with the classical high density lipoprotein (HDL)-dependent reverse cholesterol transport. Under standard conditions, macrophage preparations had considerably higher capacity to secrete 27-hydroxycholesterol and 3beta-hydroxy-5-cholestenoic acid than had endothelial cells and fibroblasts. Western blotting showed that lung macrophages contained the most sterol 27-hydroxylase protein of the cells tested. The relative amounts of 3beta-hydroxy-5-cholestenoic acid produced by the macrophages were also highest. Macrophages derived from monocytes of patients with sterol 27-hydroxylase deficiency did not secrete 27-oxygenated products, demonstrating that sterol 27-hydroxylase is the critical enzyme for the conversion of cholesterol into the 27-oxygenated steroids. That sterol 27-hydroxylase is responsible not only for 27-hydroxylation of cholesterol but also for the further oxidation of this steroid into 3beta-hydroxy-5-cholestenoic acid was shown with use of tritium-labeled 27-hydroxycholesterol and an inhibitor of sterol 27-hydroxylase. Secretion of 27-oxygenated products by the cultured macrophages as well as the ratio between the alcohol and the acid appeared to be dependent upon total 27-hydroxylase activity, the availability of substrate cholesterol, and the presence of an acceptor for 27-hydroxycholesterol in the medium. With albumin as extracellular acceptor, the major secreted product was 3beta-hydroxy-5-cholestenoic acid. Under such conditions, secretion of labeled 27-oxygenated products was higher than that of labeled cholesterol from lung alveolar macrophages preloaded with [4-14C]cholesterol. With HDL as acceptor, 27-hydroxycholesterol was the major secreted product, and the total secretion of labeled 27-oxygenated products was only about 10% of that of labeled cholesterol. Thus, 27-hydroxycholesterol and cholesterol may compete for HDL-mediated efflux from the cells. The results support the contention that the sterol 27-hydroxylase-mediated elimination of cholesterol is more important in macrophages than in endothelial cells. This mechanism may be an alternative and/or a complement to the classical HDL-mediated reverse cholesterol transport in macrophages, in particular when the concentration of HDL is low. | lld:pubmed |
pubmed-article:9334194 | pubmed:language | eng | lld:pubmed |
pubmed-article:9334194 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:9334194 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:9334194 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:9334194 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:9334194 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:9334194 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:9334194 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:9334194 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:9334194 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:9334194 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:9334194 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:9334194 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:9334194 | pubmed:month | Oct | lld:pubmed |
pubmed-article:9334194 | pubmed:issn | 0021-9258 | lld:pubmed |
pubmed-article:9334194 | pubmed:author | pubmed-author:BjörkhemII | lld:pubmed |
pubmed-article:9334194 | pubmed:author | pubmed-author:LundEE | lld:pubmed |
pubmed-article:9334194 | pubmed:author | pubmed-author:AnderssonOO | lld:pubmed |
pubmed-article:9334194 | pubmed:author | pubmed-author:DeebSS | lld:pubmed |
pubmed-article:9334194 | pubmed:author | pubmed-author:ReshefAA | lld:pubmed |
pubmed-article:9334194 | pubmed:author | pubmed-author:DiczfalusyUU | lld:pubmed |
pubmed-article:9334194 | pubmed:author | pubmed-author:BabikerAA | lld:pubmed |
pubmed-article:9334194 | pubmed:author | pubmed-author:LeitersdorfEE | lld:pubmed |
pubmed-article:9334194 | pubmed:author | pubmed-author:XiuR JRJ | lld:pubmed |
pubmed-article:9334194 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:9334194 | pubmed:day | 17 | lld:pubmed |
pubmed-article:9334194 | pubmed:volume | 272 | lld:pubmed |
pubmed-article:9334194 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:9334194 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:9334194 | pubmed:pagination | 26253-61 | lld:pubmed |
pubmed-article:9334194 | pubmed:dateRevised | 2006-11-15 | lld:pubmed |
pubmed-article:9334194 | pubmed:meshHeading | pubmed-meshheading:9334194-... | lld:pubmed |
pubmed-article:9334194 | pubmed:meshHeading | pubmed-meshheading:9334194-... | lld:pubmed |
pubmed-article:9334194 | pubmed:meshHeading | pubmed-meshheading:9334194-... | lld:pubmed |
pubmed-article:9334194 | pubmed:meshHeading | pubmed-meshheading:9334194-... | lld:pubmed |
pubmed-article:9334194 | pubmed:meshHeading | pubmed-meshheading:9334194-... | lld:pubmed |
pubmed-article:9334194 | pubmed:meshHeading | pubmed-meshheading:9334194-... | lld:pubmed |
pubmed-article:9334194 | pubmed:meshHeading | pubmed-meshheading:9334194-... | lld:pubmed |
pubmed-article:9334194 | pubmed:meshHeading | pubmed-meshheading:9334194-... | lld:pubmed |
pubmed-article:9334194 | pubmed:meshHeading | pubmed-meshheading:9334194-... | lld:pubmed |
pubmed-article:9334194 | pubmed:meshHeading | pubmed-meshheading:9334194-... | lld:pubmed |
pubmed-article:9334194 | pubmed:meshHeading | pubmed-meshheading:9334194-... | lld:pubmed |
pubmed-article:9334194 | pubmed:meshHeading | pubmed-meshheading:9334194-... | lld:pubmed |
pubmed-article:9334194 | pubmed:meshHeading | pubmed-meshheading:9334194-... | lld:pubmed |
pubmed-article:9334194 | pubmed:meshHeading | pubmed-meshheading:9334194-... | lld:pubmed |
pubmed-article:9334194 | pubmed:meshHeading | pubmed-meshheading:9334194-... | lld:pubmed |
pubmed-article:9334194 | pubmed:meshHeading | pubmed-meshheading:9334194-... | lld:pubmed |
pubmed-article:9334194 | pubmed:meshHeading | pubmed-meshheading:9334194-... | lld:pubmed |
pubmed-article:9334194 | pubmed:year | 1997 | lld:pubmed |
pubmed-article:9334194 | pubmed:articleTitle | Elimination of cholesterol in macrophages and endothelial cells by the sterol 27-hydroxylase mechanism. Comparison with high density lipoprotein-mediated reverse cholesterol transport. | lld:pubmed |
pubmed-article:9334194 | pubmed:affiliation | Department of Medical Laboratory Sciences and Technology, The Karolinska Institute, SE-141 86, Huddinge, Sweden. | lld:pubmed |
pubmed-article:9334194 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:9334194 | pubmed:publicationType | Comparative Study | lld:pubmed |
pubmed-article:9334194 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:9334194 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:9334194 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:9334194 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:9334194 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:9334194 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:9334194 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:9334194 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:9334194 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:9334194 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:9334194 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:9334194 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:9334194 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:9334194 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:9334194 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:9334194 | lld:pubmed |