pubmed-article:8635545 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:8635545 | lifeskim:mentions | umls-concept:C0031119 | lld:lifeskim |
pubmed-article:8635545 | lifeskim:mentions | umls-concept:C0036387 | lld:lifeskim |
pubmed-article:8635545 | lifeskim:mentions | umls-concept:C0004927 | lld:lifeskim |
pubmed-article:8635545 | lifeskim:mentions | umls-concept:C0027756 | lld:lifeskim |
pubmed-article:8635545 | lifeskim:mentions | umls-concept:C0232901 | lld:lifeskim |
pubmed-article:8635545 | lifeskim:mentions | umls-concept:C0178499 | lld:lifeskim |
pubmed-article:8635545 | lifeskim:mentions | umls-concept:C1527178 | lld:lifeskim |
pubmed-article:8635545 | pubmed:issue | 2 | lld:pubmed |
pubmed-article:8635545 | pubmed:dateCreated | 1996-7-11 | lld:pubmed |
pubmed-article:8635545 | pubmed:abstractText | In axonal regeneration after a peripheral nerve injury, Schwann cells migrate from the two nerve ends and at last form a continuous tissue cable across the gap which guides the axons toward the bands of Bungner. However, the behavior of migratory Schwann cells and their possible role are obscure. Using a film model in which the proximal stump of a transected nerve in mice was sandwiched between two thin plastic films, we analyzed neural regeneration in the early phase up to the 6th day after axotomy. Regenerating neurites emerged from the nodes of Ranvier adjacent to the axotomized nerve stump within 3 h after axotomy and extended along the parent nerve onto the film. All of the regenerating neurites on the surface of the film consisted of naked axons for at least 2 days after axotomy. Thereafter, Schwann cells from the proximal nerve migrated along a network of the regenerating axons and then closely attached to the axons, ensheathing them. Some of the Schwann cells advanced ahead of the axonal growth cones and were distributed over regions in which axonal extension was not yet present. As calculated from the time course of regenerating neurites, the velocity of axonal regeneration showed two phases: an initial slow phase (77 mu m/day) up to the 2nd post-operative day followed by a faster phase (283 mu m/day). The first observation of Schwann cells coincided with the onset of the second phase. In addition, the length of regenerating axons on the surface of the film containing many Schwann cells was significantly greater than that on the surface where Schwann cells were not yet present. It meant that migratory Schwann cells stimulated axons to elongate for a longer distance. Furthermore, Schwann cells from a distal stump showed a stronger ability to accelerate the axonal outgrowth than these from a proximal stump. | lld:pubmed |
pubmed-article:8635545 | pubmed:language | eng | lld:pubmed |
pubmed-article:8635545 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:8635545 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:8635545 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:8635545 | pubmed:month | Feb | lld:pubmed |
pubmed-article:8635545 | pubmed:issn | 0014-4886 | lld:pubmed |
pubmed-article:8635545 | pubmed:author | pubmed-author:HashimotoKK | lld:pubmed |
pubmed-article:8635545 | pubmed:author | pubmed-author:TakahashiAA | lld:pubmed |
pubmed-article:8635545 | pubmed:author | pubmed-author:AwayaAA | lld:pubmed |
pubmed-article:8635545 | pubmed:author | pubmed-author:TorigoeKK | lld:pubmed |
pubmed-article:8635545 | pubmed:author | pubmed-author:TanakaH FHF | lld:pubmed |
pubmed-article:8635545 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:8635545 | pubmed:volume | 137 | lld:pubmed |
pubmed-article:8635545 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:8635545 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:8635545 | pubmed:pagination | 301-8 | lld:pubmed |
pubmed-article:8635545 | pubmed:dateRevised | 2006-11-15 | lld:pubmed |
pubmed-article:8635545 | pubmed:meshHeading | pubmed-meshheading:8635545-... | lld:pubmed |
pubmed-article:8635545 | pubmed:meshHeading | pubmed-meshheading:8635545-... | lld:pubmed |
pubmed-article:8635545 | pubmed:meshHeading | pubmed-meshheading:8635545-... | lld:pubmed |
pubmed-article:8635545 | pubmed:meshHeading | pubmed-meshheading:8635545-... | lld:pubmed |
pubmed-article:8635545 | pubmed:meshHeading | pubmed-meshheading:8635545-... | lld:pubmed |
pubmed-article:8635545 | pubmed:meshHeading | pubmed-meshheading:8635545-... | lld:pubmed |
pubmed-article:8635545 | pubmed:meshHeading | pubmed-meshheading:8635545-... | lld:pubmed |
pubmed-article:8635545 | pubmed:meshHeading | pubmed-meshheading:8635545-... | lld:pubmed |
pubmed-article:8635545 | pubmed:meshHeading | pubmed-meshheading:8635545-... | lld:pubmed |
pubmed-article:8635545 | pubmed:meshHeading | pubmed-meshheading:8635545-... | lld:pubmed |
pubmed-article:8635545 | pubmed:year | 1996 | lld:pubmed |
pubmed-article:8635545 | pubmed:articleTitle | Basic behavior of migratory Schwann cells in peripheral nerve regeneration. | lld:pubmed |
pubmed-article:8635545 | pubmed:affiliation | Department of Anatomy, Fukui Medical School, Matsuika, Fukui 910-11, Japan. | lld:pubmed |
pubmed-article:8635545 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:8635545 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:8635545 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:8635545 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:8635545 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:8635545 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:8635545 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:8635545 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:8635545 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:8635545 | lld:pubmed |