pubmed-article:8573566 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:8573566 | lifeskim:mentions | umls-concept:C0012854 | lld:lifeskim |
pubmed-article:8573566 | lifeskim:mentions | umls-concept:C1705165 | lld:lifeskim |
pubmed-article:8573566 | lifeskim:mentions | umls-concept:C1880177 | lld:lifeskim |
pubmed-article:8573566 | lifeskim:mentions | umls-concept:C2700061 | lld:lifeskim |
pubmed-article:8573566 | pubmed:issue | 4 | lld:pubmed |
pubmed-article:8573566 | pubmed:dateCreated | 1996-3-13 | lld:pubmed |
pubmed-article:8573566 | pubmed:abstractText | In this paper, the finite difference nonlinear Poisson-Boltzmann (NLPB) equation is used to calculate the electrostatic contribution to the B to Z transition of DNA using detailed molecular structures of each DNA form. The electrostatic transition free energy is described as a balance between the change in intramolecular Coulombic interactions and charge-dependent interactions between the DNA and the solvent. As in many prior studies, we find that the larger electrostatic repulsions among the more closely spaced Z-DNA phosphates destabilize this form compared to B-DNA in the absence of solvent. However, as a result of the more compact three-dimensional geometry of Z-DNA, both water and salt are found to strongly stabilize this conformation to the extent that the total electrostatic free energy favors the B to Z transition in aqueous solution. Water acts not only by screening the inter-phosphate repulsions but also by solvating both charged and polar groups on Z-DNA more favorably than B-DNA. In addition, Z-DNA is stabilized by a substantially higher concentration of nearby counterions than B-DNA. The relative stabilization of Z-DNA by salt increases with increasing bulk salt concentration, leading to the high-salt B to Z transition. We find that the salt dependence of the B to Z transition free energy calculated with the NLPB equation agrees reasonably well with experimental results. Since electrostatic interactions are found to favor the Z-form, nonelectrostatic forces must be responsible for the relative stability of B-DNA in solution. An analysis of these forces suggests that the conformational entropy may play an important role. | lld:pubmed |
pubmed-article:8573566 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:8573566 | pubmed:language | eng | lld:pubmed |
pubmed-article:8573566 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:8573566 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:8573566 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:8573566 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:8573566 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:8573566 | pubmed:month | Jan | lld:pubmed |
pubmed-article:8573566 | pubmed:issn | 0006-2960 | lld:pubmed |
pubmed-article:8573566 | pubmed:author | pubmed-author:HonigBB | lld:pubmed |
pubmed-article:8573566 | pubmed:author | pubmed-author:MisraV KVK | lld:pubmed |
pubmed-article:8573566 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:8573566 | pubmed:day | 30 | lld:pubmed |
pubmed-article:8573566 | pubmed:volume | 35 | lld:pubmed |
pubmed-article:8573566 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:8573566 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:8573566 | pubmed:pagination | 1115-24 | lld:pubmed |
pubmed-article:8573566 | pubmed:dateRevised | 2007-11-14 | lld:pubmed |
pubmed-article:8573566 | pubmed:meshHeading | pubmed-meshheading:8573566-... | lld:pubmed |
pubmed-article:8573566 | pubmed:meshHeading | pubmed-meshheading:8573566-... | lld:pubmed |
pubmed-article:8573566 | pubmed:meshHeading | pubmed-meshheading:8573566-... | lld:pubmed |
pubmed-article:8573566 | pubmed:meshHeading | pubmed-meshheading:8573566-... | lld:pubmed |
pubmed-article:8573566 | pubmed:meshHeading | pubmed-meshheading:8573566-... | lld:pubmed |
pubmed-article:8573566 | pubmed:meshHeading | pubmed-meshheading:8573566-... | lld:pubmed |
pubmed-article:8573566 | pubmed:meshHeading | pubmed-meshheading:8573566-... | lld:pubmed |
pubmed-article:8573566 | pubmed:meshHeading | pubmed-meshheading:8573566-... | lld:pubmed |
pubmed-article:8573566 | pubmed:year | 1996 | lld:pubmed |
pubmed-article:8573566 | pubmed:articleTitle | The electrostatic contribution to the B to Z transition of DNA. | lld:pubmed |
pubmed-article:8573566 | pubmed:affiliation | Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA. | lld:pubmed |
pubmed-article:8573566 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:8573566 | pubmed:publicationType | Research Support, U.S. Gov't, P.H.S. | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:8573566 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:8573566 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:8573566 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:8573566 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:8573566 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:8573566 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:8573566 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:8573566 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:8573566 | lld:pubmed |